These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16454266)

  • 1. An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth.
    Mi B; Michaels JE; Michaels TE
    J Acoust Soc Am; 2006 Jan; 119(1):74-85. PubMed ID: 16454266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of high frequency guided wave scattering at a fastener hole with a view to fatigue crack detection.
    Masserey B; Fromme P
    Ultrasonics; 2017 Apr; 76():78-86. PubMed ID: 28086108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-based sizing of surface-breaking cracks by SH-wave array ultrasonic testing.
    Kimoto K; Ueno S; Hirose S
    Ultrasonics; 2006 Dec; 45(1-4):152-64. PubMed ID: 17005228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel ultrasonic non-destructive testing methodology to monitor fatigue crack growth in compact tension specimens.
    Abraham ST; Babu MN; Venkatraman B
    Rev Sci Instrum; 2023 Mar; 94(3):035108. PubMed ID: 37012745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue-Crack Detection and Monitoring through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers.
    Xiao W; Yu L; Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Multiple Cracks in Four-Point Bending Tests Using the Coda Wave Interferometry Method.
    Wang X; Chakraborty J; Bassil A; Niederleithinger E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32252283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test.
    Reymer P; Leski A; Dziendzikowski M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance.
    Zhang M; Xiao L; Qu W; Lu Y
    Ultrasonics; 2017 May; 77():152-159. PubMed ID: 28237824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear acoustic response through minute surface cracks: FEM simulation and experimentation.
    Kawashima K; Omote R; Ito T; Fujita H; Shima T
    Ultrasonics; 2002 May; 40(1-8):611-5. PubMed ID: 12160011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crack Detection of Threaded Steel Rods Based on Ultrasonic Guided Waves.
    Peng K; Zhang Y; Xu X; Han J; Luo Y
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring fatigue cracks in riveted plates using a sideband intensity based nonlinear ultrasonic technique.
    Hu B; Amjad U; Kundu T
    Ultrasonics; 2024 Jul; 141():107335. PubMed ID: 38692212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Sensing Nonlinear Ultrasonic Fatigue Crack Detection under Temperature Variation
    Kim N; Jang K; An YK
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Micro-Cracks in Metals Using Modulation of PZT-Induced Lamb Waves.
    Lee SE; Hong JW
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive detection and localization of fatigue cracking in aluminum plates using Green's function reconstruction from ambient noise.
    Yang Y; Xiao L; Qu W; Lu Y
    Ultrasonics; 2017 Nov; 81():187-195. PubMed ID: 28711637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early Crack Detection of Reinforced Concrete Structure Using Embedded Sensors.
    Chakraborty J; Katunin A; Klikowicz P; Salamak M
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31505782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.
    Ohara Y; Horinouchi S; Hashimoto M; Shintaku Y; Yamanaka K
    Ultrasonics; 2011 Aug; 51(6):661-6. PubMed ID: 21414647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermo-optical modulation of ultrasonic surface waves for NDE.
    Yan Z; Nagy PB
    Ultrasonics; 2002 May; 40(1-8):689-96. PubMed ID: 12160027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue Growth Behaviour of Two Interacting Cracks with Different Crack Offset.
    Jin H; Cui B; Mao L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of crack parameters by a nonlinear frequency-mixing laser ultrasonics method.
    Mezil S; Chigarev N; Tournat V; Gusev V
    Ultrasonics; 2016 Jul; 69():225-35. PubMed ID: 27090110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of ultrasonic back-reflection intensity for predicting the onset of crack growth due to low-cycle fatigue in stainless steel under block loading.
    Islam MN; Arai Y; Araki W
    Ultrasonics; 2015 Feb; 56():354-60. PubMed ID: 25287974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.