These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16454314)

  • 1. Beamformer performance with acoustic vector sensors in air.
    Lockwood ME; Jones DL
    J Acoust Soc Am; 2006 Jan; 119(1):608-19. PubMed ID: 16454314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of time- and frequency-domain binaural beamformers based on recorded signals from real rooms.
    Lockwood ME; Jones DL; Bilger RC; Lansing CR; O'Brien WD; Wheeler BC; Feng AS
    J Acoust Soc Am; 2004 Jan; 115(1):379-91. PubMed ID: 14759029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Dual-Microphone Generalized Sidelobe Canceller Using a Bone-Conduction Sensor for Speech Enhancement.
    Zhou Y; Wang H; Chu Y; Liu H
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A directionally tunable but frequency-invariant beamformer on an acoustic velocity-sensor triad to enhance speech perception.
    Wu YI; Wong KT; Yuan X; Lau SK; Tang SK
    J Acoust Soc Am; 2012 May; 131(5):3891-902. PubMed ID: 22559365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixed and adaptive beamforming improves speech perception in noise in cochlear implant recipients equipped with the MED-EL SONNET audio processor.
    Honeder C; Liepins R; Arnoldner C; Šinkovec H; Kaider A; Vyskocil E; Riss D
    PLoS One; 2018; 13(1):e0190718. PubMed ID: 29304186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A beamformer post-filter for cochlear implant noise reduction.
    Hersbach AA; Grayden DB; Fallon JB; McDermott HJ
    J Acoust Soc Am; 2013 Apr; 133(4):2412-20. PubMed ID: 23556606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.
    Spriet A; Van Deun L; Eftaxiadis K; Laneau J; Moonen M; van Dijk B; van Wieringen A; Wouters J
    Ear Hear; 2007 Feb; 28(1):62-72. PubMed ID: 17204899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a portable two-microphone adaptive beamforming speech processor with cochlear implant patients.
    van Hoesel RJ; Clark GM
    J Acoust Soc Am; 1995 Apr; 97(4):2498-503. PubMed ID: 7714267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep neural network-based generalized sidelobe canceller for dual-channel far-field speech recognition.
    Li G; Liang S; Nie S; Liu W; Yang Z
    Neural Netw; 2021 Sep; 141():225-237. PubMed ID: 33930564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.
    Gur B
    J Acoust Soc Am; 2014 Jun; 135(6):3463-73. PubMed ID: 24907810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of hearing-aid array processing techniques.
    Kates JM; Weiss MR
    J Acoust Soc Am; 1996 May; 99(5):3138-48. PubMed ID: 8642122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A directional adaptive least-mean-square acoustic array for hearing aid enhancement.
    DeBrunner VE; McKinney ED
    J Acoust Soc Am; 1995 Jul; 98(1):437-44. PubMed ID: 7608404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust adaptive microphone array processing for hearing aids: realistic speech enhancement.
    Hoffman MW; Trine TD; Buckley KM; Van Tasell DJ
    J Acoust Soc Am; 1994 Aug; 96(2 Pt 1):759-70. PubMed ID: 7930077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A modified least mean square (LMS) algorithm with variable step-size for an adaptive noise canceller].
    Gao H; Niu CM; Wu W
    Space Med Med Eng (Beijing); 2002 Oct; 15(5):366-8. PubMed ID: 12449145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimicrophone adaptive beamforming for interference reduction in hearing aids.
    Peterson PM; Durlach NI; Rabinowitz WM; Zurek PM
    J Rehabil Res Dev; 1987; 24(4):103-10. PubMed ID: 3430369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of an adaptive beamforming noise reduction scheme for hearing aid applications. II. Experimental verification of the predictions.
    Kompis M; Dillier N
    J Acoust Soc Am; 2001 Mar; 109(3):1134-43. PubMed ID: 11303927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multistage minimum variance distortionless response beamformer for noise reduction.
    Pan C; Chen J; Benesty J
    J Acoust Soc Am; 2015 Mar; 137(3):1377-88. PubMed ID: 25786950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the benefit for cochlear implantees of two assistive directional microphone systems in an artificial diffuse noise situation.
    van der Beek FB; Soede W; Frijns JH
    Ear Hear; 2007 Feb; 28(1):99-110. PubMed ID: 17204902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech intelligibility enhancement using hearing-aid array processing.
    Saunders GH; Kates JM
    J Acoust Soc Am; 1997 Sep; 102(3):1827-37. PubMed ID: 9301060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manikin and cochlear implant patient test results with a portable adaptive beamforming processor to suppress the effects of noise.
    van Hoesel RJ; Clark GM
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():144-6. PubMed ID: 7668608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.