BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16454917)

  • 1. Limitations arising from two-photon absorption of solvent in pulsed-laser thermal lens detection: determination of the two-photon absorption coefficient of ethanol at 266 nm.
    Abbas Ghaleb K; Georges J
    Appl Spectrosc; 2006 Jan; 60(1):86-8. PubMed ID: 16454917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon induced uncaging of a reactive intermediate. Multiphoton in situ detection of a potentially valuable label for biological applications.
    Dyer J; Jockusch S; Balsanek V; Sames D; Turro NJ
    J Org Chem; 2005 Mar; 70(6):2143-7. PubMed ID: 15760198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimizing urine autofluorescence under multi-photon excitation conditions.
    Bukowski EJ; Bright FV
    Appl Spectrosc; 2004 Sep; 58(9):1101-5. PubMed ID: 15479527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond.
    Wee TL; Tzeng YK; Han CC; Chang HC; Fann W; Hsu JH; Chen KM; Yu YC
    J Phys Chem A; 2007 Sep; 111(38):9379-86. PubMed ID: 17705460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage.
    Koester HJ; Baur D; Uhl R; Hell SW
    Biophys J; 1999 Oct; 77(4):2226-36. PubMed ID: 10512842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acousto-optic modulator system for femtosecond laser pulses.
    Zeng S; Bi K; Xue S; Liu Y; Lv X; Luo Q
    Rev Sci Instrum; 2007 Jan; 78(1):015103. PubMed ID: 17503942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond two-photon absorption measurements based on the accumulative photo-thermal effect and the Rayleigh interferometer.
    Rodriguez L; Ahn HY; Belfield KD
    Opt Express; 2009 Oct; 17(22):19617-28. PubMed ID: 19997182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel diode-pumped infrared tunable laser system for multi-photon microscopy.
    Deguil N; Mottay E; Salin F; Legros P; Choquet D
    Microsc Res Tech; 2004 Jan; 63(1):23-6. PubMed ID: 14677130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of two-photon laser-induced fluorescence for single-shot visualization of carbon monoxide in a spark ignited engine.
    Richter M; Li ZS; Aldén M
    Appl Spectrosc; 2007 Jan; 61(1):1-5. PubMed ID: 17311706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of two-photon-induced three-photon absorption in nanosecond, picosecond, and femtosecond regimes.
    Gu B; Lou K; Wang HT; Ji W
    Opt Lett; 2010 Feb; 35(3):417-9. PubMed ID: 20125740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2849-55. PubMed ID: 16165023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the optimum optical design for pulsed-laser crossed-beam thermal lens spectrometry in infinite and finite samples.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):863-72. PubMed ID: 15036097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-, two-, and three-photon absorption induced fluorescence of a novel chromophore in chloroform solution.
    Wang Y; Tai OY; Wang CH; Jen AK
    J Chem Phys; 2004 Oct; 121(16):7901-7. PubMed ID: 15485252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-color two-photon excitation using femtosecond laser pulses.
    Quentmeier S; Denicke S; Ehlers JE; Niesner RA; Gericke KH
    J Phys Chem B; 2008 May; 112(18):5768-73. PubMed ID: 18407711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes.
    Belfield KD; Bondar MV; Hernandez FE; Przhonska OV; Yao S
    J Phys Chem B; 2007 Nov; 111(44):12723-9. PubMed ID: 17939706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H atom formation from benzene and toluene photoexcitation at 248 nm.
    Kovács T; Blitz MA; Seakins PW; Pilling MJ
    J Chem Phys; 2009 Nov; 131(20):204304. PubMed ID: 19947677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:Sapphire laser.
    Bindewald-Wittich A; Han M; Schmitz-Valckenberg S; Snyder SR; Giese G; Bille JF; Holz FG
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4553-7. PubMed ID: 17003452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal control of local plasmon distribution on Au nanocrosses by ultra-broadband femtosecond laser pulses and its application for selective two-photon excitation of multiple fluorophores.
    Harada T; Matsuishi K; Oishi Y; Isobe K; Suda A; Kawan H; Mizuno H; Miyawaki A; Midorikawa K; Kannari F
    Opt Express; 2011 Jul; 19(14):13618-27. PubMed ID: 21747518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070-6180 cm-1 region.
    Kapitanov VA; Ponomarev YN; Tyryshkin IS; Rostov AP
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):811-8. PubMed ID: 17185026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.