BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 16455197)

  • 21. Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing.
    Makino T; Kamiya T; Takano H; Itou T; Sekiya N; Sasaki K; Maejima Y; Sugahara K
    Environ Pollut; 2007 May; 147(1):112-9. PubMed ID: 17141928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil.
    Isoyama M; Wada S
    J Hazard Mater; 2007 May; 143(3):636-42. PubMed ID: 17267106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heap leaching of Cu contaminated soil with [S,S]-EDDS in a closed process loop.
    Finzgar N; Zumer A; Lestan D
    J Hazard Mater; 2006 Jul; 135(1-3):418-22. PubMed ID: 16439058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil.
    Jacques RJ; Okeke BC; Bento FM; Teixeira AS; Peralba MC; Camargo FA
    Bioresour Technol; 2008 May; 99(7):2637-43. PubMed ID: 17572084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil.
    Sun M; Luo Y; Teng Y; Christie P; Jia Z; Li Z
    Biodegradation; 2013 Jun; 24(3):365-75. PubMed ID: 23001628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of soil ozonation: an experimental and numerical investigation.
    Shin WT; Garanzuay X; Yiacoumi S; Tsouris C; Gu B; Mahinthakumar GK
    J Contam Hydrol; 2004 Aug; 72(1-4):227-43. PubMed ID: 15240174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO(2) under UV light.
    Zhang L; Li P; Gong Z; Li X
    J Hazard Mater; 2008 Oct; 158(2-3):478-84. PubMed ID: 18372106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge by different composting processes.
    Cai QY; Mo CH; Wu QT; Zeng QY; Katsoyiannis A; Férard JF
    J Hazard Mater; 2007 Apr; 142(1-2):535-42. PubMed ID: 17029776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment.
    Sangave PC; Gogate PR; Pandit AB
    Chemosphere; 2007 May; 68(1):32-41. PubMed ID: 17280704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ozone treatment of PAH contaminated soils: operating variables effect.
    Rivas J; Gimeno O; de la Calle RG; Beltrán FJ
    J Hazard Mater; 2009 Sep; 169(1-3):509-15. PubMed ID: 19409699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the ozonation and Fenton process performances for the treatment of antibiotic containing manure.
    Uslu MO; Balcioğlu IA
    Sci Total Environ; 2009 May; 407(11):3450-8. PubMed ID: 19232678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proposal of a sequential treatment methodology for the safe reuse of oil sludge-contaminated soil.
    Mater L; Sperb RM; Madureira LA; Rosin AP; Correa AX; Radetski CM
    J Hazard Mater; 2006 Aug; 136(3):967-71. PubMed ID: 16490304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees.
    Mueller KE; Shann JR
    Chemosphere; 2006 Aug; 64(6):1006-14. PubMed ID: 16494925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous mobilization of macro- and trace elements (MTEs) and polycyclic aromatic hydrocarbon (PAH) compounds from soil with a nonionic surfactant and [S,S]-ethylenediaminedisuccinic acid (EDDS) in admixture: PAH compounds.
    Wen Y; Ehsan S; Marshall WD
    J Hazard Mater; 2012 Jan; 199-200():240-6. PubMed ID: 22119309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Risk assessment and remediation suggestion of impacted soil by produced water associated with oil production.
    Abdol Hamid HR; Kassim WM; El Hishir A; El-Jawashi SA
    Environ Monit Assess; 2008 Oct; 145(1-3):95-102. PubMed ID: 18097768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stigmastane and hopanes as conserved biomarkers for estimating oil biodegradation in a former refinery plant-contaminated soil.
    Gagni S; Cam D
    Chemosphere; 2007 May; 67(10):1975-81. PubMed ID: 17275878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics in oxidative degradation by ozone for saturated hydrocarbons in soil contaminated with diesel fuel.
    Yu DY; Kang N; Bae W; Banks MK
    Chemosphere; 2007 Jan; 66(5):799-807. PubMed ID: 16872663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The chemical and biological characteristics of coke-oven wastewater by ozonation.
    Chang EE; Hsing HJ; Chiang PC; Chen MY; Shyng JY
    J Hazard Mater; 2008 Aug; 156(1-3):560-7. PubMed ID: 18387739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: an assessment of soil-air exchange.
    Wang D; Yang M; Jia H; Zhou L; Li Y
    J Environ Monit; 2008 Sep; 10(9):1076-83. PubMed ID: 18728901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slurry phase bioremediation of PAHs in industrial landfill samples at laboratory scale.
    Di Gennaro P; Franzetti A; Bestetti G; Lasagni M; Pitea D; Collina E
    Waste Manag; 2008; 28(8):1338-45. PubMed ID: 17851065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.