These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 16455274)
1. A cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans. Guo J; Jiang RH; Kamphuis LG; Govers F Fungal Genet Biol; 2006 Feb; 43(2):111-23. PubMed ID: 16455274 [TBL] [Abstract][Full Text] [Related]
2. Identification and cloning of differentially expressed genes involved in the interaction between potato and Phytophthora infestans using a subtractive hybridization and cDNA-AFLP combinational approach. Henriquez MA; Daayf F J Integr Plant Biol; 2010 May; 52(5):453-67. PubMed ID: 20537041 [TBL] [Abstract][Full Text] [Related]
3. Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora. Jiang RH; Weide R; van de Vondervoort PJ; Govers F Genome Res; 2006 Jul; 16(7):827-40. PubMed ID: 16818726 [TBL] [Abstract][Full Text] [Related]
4. Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans. Win J; Kanneganti TD; Torto-Alalibo T; Kamoun S Fungal Genet Biol; 2006 Jan; 43(1):20-33. PubMed ID: 16380277 [TBL] [Abstract][Full Text] [Related]
5. Mapping of avirulence genes in Phytophthora infestans with amplified fragment length polymorphism markers selected by bulked segregant analysis. van der Lee T; Robold A; Testa A; van 't Klooster JW; Govers F Genetics; 2001 Mar; 157(3):949-56. PubMed ID: 11238385 [TBL] [Abstract][Full Text] [Related]
6. Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Kamoun S; Hraber P; Sobral B; Nuss D; Govers F Fungal Genet Biol; 1999 Nov; 28(2):94-106. PubMed ID: 10587472 [TBL] [Abstract][Full Text] [Related]
7. Effector-triggered immunity by the plant pathogen Phytophthora. Qutob D; Tedman-Jones J; Gijzen M Trends Microbiol; 2006 Nov; 14(11):470-3. PubMed ID: 16996740 [TBL] [Abstract][Full Text] [Related]
9. Chromosomal deletion in isolates of Phytophthora infestans correlates with virulence on R3, R10, and R11 potato lines. van der Lee T; Testa A; van 't Klooster J; van den Berg-Velthuis G; Govers F Mol Plant Microbe Interact; 2001 Dec; 14(12):1444-52. PubMed ID: 11768540 [TBL] [Abstract][Full Text] [Related]
10. Comparative cDNA-AFLP analysis reveals that DL-beta-amino-butyric acid induces resistance through early activation of the host-defense genes in potato. Li Y; Tian Z; Liu J; Xie C Physiol Plant; 2009 May; 136(1):19-29. PubMed ID: 19508365 [TBL] [Abstract][Full Text] [Related]
11. Downstream targets of the Phytophthora infestans Galpha subunit PiGPA1 revealed by cDNA-AFLP. Dong W; Latijnhouwers M; Jiang RH; Meijer HJ; Govers F Mol Plant Pathol; 2004 Sep; 5(5):483-94. PubMed ID: 20565622 [TBL] [Abstract][Full Text] [Related]
12. Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Restrepo S; Myers KL; del Pozo O; Martin GB; Hart AL; Buell CR; Fry WE; Smart CD Mol Plant Microbe Interact; 2005 Sep; 18(9):913-22. PubMed ID: 16167762 [TBL] [Abstract][Full Text] [Related]
14. Physical mapping across an avirulence locus of Phytophthora infestans using a highly representative, large-insert bacterial artificial chromosome library. Whisson SC; van der Lee T; Bryan GJ; Waugh R; Govers F; Birch PR Mol Genet Genomics; 2001 Oct; 266(2):289-95. PubMed ID: 11683271 [TBL] [Abstract][Full Text] [Related]
15. Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Panabières F; Amselem J; Galiana E; Le Berre JY Fungal Genet Biol; 2005 Jul; 42(7):611-23. PubMed ID: 15950158 [TBL] [Abstract][Full Text] [Related]
16. Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Grenville-Briggs LJ; Avrova AO; Bruce CR; Williams A; Whisson SC; Birch PR; van West P Fungal Genet Biol; 2005 Mar; 42(3):244-56. PubMed ID: 15707845 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response. Quaggiotti S; Barcaccia G; Schiavon M; Nicolé S; Galla G; Rossignolo V; Soattin M; Malagoli M Gene; 2007 Nov; 402(1-2):68-80. PubMed ID: 17765407 [TBL] [Abstract][Full Text] [Related]
18. Identification of levamisole resistance markers in the parasitic nematode Haemonchus contortus using a cDNA-AFLP approach. Neveu C; Charvet C; Fauvin A; Cortet J; Castagnone-Sereno P; Cabaret J Parasitology; 2007; 134(Pt 8):1105-10. PubMed ID: 17608970 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome response of the Pacific oyster (Crassostrea gigas) to infection with Vibrio tubiashii using cDNA AFLP differential display. Taris N; Lang RP; Reno PW; Camara MD Anim Genet; 2009 Oct; 40(5):663-77. PubMed ID: 19456319 [TBL] [Abstract][Full Text] [Related]
20. Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. Chen X; Shen G; Wang Y; Zheng X; Wang Y FEMS Microbiol Lett; 2007 Apr; 269(2):280-8. PubMed ID: 17263843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]