BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16455685)

  • 1. Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle.
    Zhang SJ; Bruton JD; Katz A; Westerblad H
    J Physiol; 2006 Apr; 572(Pt 2):551-9. PubMed ID: 16455685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.
    Bruton JD; Place N; Yamada T; Silva JP; Andrade FH; Dahlstedt AJ; Zhang SJ; Katz A; Larsson NG; Westerblad H
    J Physiol; 2008 Jan; 586(1):175-84. PubMed ID: 18006575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice.
    Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H
    J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of modulators of sarcoplasmic Ca2+ release on the development of skeletal muscle fatigue.
    Germinario E; Esposito A; Megighian A; Midrio M; Betto R; Danieli-Betto D
    J Appl Physiol (1985); 2004 Feb; 96(2):645-9. PubMed ID: 14715683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of ageing on the fatigability of isolated mouse skeletal muscles from mature and aged mice.
    Brotto MA; Nosek TM; Kolbeck RC
    Exp Physiol; 2002 Jan; 87(1):77-82. PubMed ID: 11805861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres.
    Nielsen J; Cheng AJ; Ørtenblad N; Westerblad H
    J Physiol; 2014 May; 592(9):2003-12. PubMed ID: 24591577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle.
    Cairns SP; Taberner AJ; Loiselle DS
    J Appl Physiol (1985); 2009 Jan; 106(1):101-12. PubMed ID: 18948444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological
    Bailey SJ; Gandra PG; Jones AM; Hogan MC; Nogueira L
    J Physiol; 2019 Nov; 597(22):5429-5443. PubMed ID: 31541562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired sarcoplasmic reticulum Ca
    Olsson K; Cheng AJ; Al-Ameri M; Wyckelsma VL; Rullman E; Westerblad H; Lanner JT; Gustafsson T; Bruton JD
    J Physiol; 2020 Feb; 598(4):773-787. PubMed ID: 31785106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
    Cairns SP; Leader JP; Loiselle DS; Higgins A; Lin W; Renaud JM
    J Appl Physiol (1985); 2015 Mar; 118(6):662-74. PubMed ID: 25571990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice.
    Dahlstedt AJ; Katz A; Westerblad H
    J Physiol; 2001 Jun; 533(Pt 2):379-88. PubMed ID: 11389199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High temperature does not alter fatigability in intact mouse skeletal muscle fibres.
    Place N; Yamada T; Zhang SJ; Westerblad H; Bruton JD
    J Physiol; 2009 Oct; 587(Pt 19):4717-24. PubMed ID: 19675072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of creatine kinase reduces the rate of fatigue-induced decrease in tetanic [Ca(2+)](i) in mouse skeletal muscle.
    Dahlstedt AJ; Westerblad H
    J Physiol; 2001 Jun; 533(Pt 3):639-49. PubMed ID: 11410623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.
    Yu ZB
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):525-33. PubMed ID: 24654535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle.
    Allen DG; Lännergren J; Westerblad H
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):587-600. PubMed ID: 9051572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia.
    Hansen AK; Clausen T; Nielsen OB
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C104-12. PubMed ID: 15743886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.
    Lipská E; Radzyukevich T
    Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1992 Apr; 449():49-71. PubMed ID: 1522520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.