These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16456073)

  • 1. The large-scale axisymmetric magnetic topology of a very-low-mass fully convective star.
    Donati JF; Forveille T; Cameron AC; Barnes JR; Delfosse X; Jardine MM; Valenti JA
    Science; 2006 Feb; 311(5761):633-5. PubMed ID: 16456073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fossil origin for the magnetic field in A stars and white dwarfs.
    Braithwaite J; Spruit HC
    Nature; 2004 Oct; 431(7010):819-21. PubMed ID: 15483604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar-type dynamo behaviour in fully convective stars without a tachocline.
    Wright NJ; Drake JJ
    Nature; 2016 Jul; 535(7613):526-8. PubMed ID: 27466124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields.
    Stanley S; Bloxham J
    Nature; 2004 Mar; 428(6979):151-3. PubMed ID: 15014493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.
    Blackman EG; Frank A; Markiel JA; Thomas JH; Van Horn HM
    Nature; 2001 Jan; 409(6819):485-7. PubMed ID: 11206538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic fields in non-convective regions of stars.
    Braithwaite J; Spruit HC
    R Soc Open Sci; 2017 Feb; 4(2):160271. PubMed ID: 28386410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.
    Stello D; Cantiello M; Fuller J; Huber D; García RA; Bedding TR; Bildsten L; Aguirre VS
    Nature; 2016 Jan; 529(7586):364-7. PubMed ID: 26727160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic fields in superconducting neutron stars.
    Lander SK
    Phys Rev Lett; 2013 Feb; 110(7):071101. PubMed ID: 25166363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accreting neutron stars, black holes, and degenerate dwarf stars.
    Pines D
    Science; 1980 Feb; 207(4431):597-606. PubMed ID: 17749313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic fields in the formation of massive stars.
    Girart JM; Beltrán MT; Zhang Q; Rao R; Estalella R
    Science; 2009 Jun; 324(5933):1408-11. PubMed ID: 19520952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic fields in the formation of sun-like stars.
    Girart JM; Rao R; Marrone DP
    Science; 2006 Aug; 313(5788):812-4. PubMed ID: 16902132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A magnetically collimated jet from an evolved star.
    Vlemmings WH; Diamond PJ; Imai H
    Nature; 2006 Mar; 440(7080):58-60. PubMed ID: 16511488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D simulations of oxygen shell burning with and without magnetic fields.
    Varma V; Müller B
    Mon Not R Astron Soc; 2021 Jun; 504(1):636-647. PubMed ID: 33935581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An 84-microG magnetic field in a galaxy at redshift z = 0.692.
    Wolfe AM; Jorgenson RA; Robishaw T; Heiles C; Prochaska JX
    Nature; 2008 Oct; 455(7213):638-40. PubMed ID: 18833273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of cooling by strong magnetic fields in white dwarf stars.
    Valyavin G; Shulyak D; Wade GA; Antonyuk K; Zharikov SV; Galazutdinov GA; Plachinda S; Bagnulo S; Machado LF; Alvarez M; Clark DM; Lopez JM; Hiriart D; Han I; Jeon YB; Zurita C; Mujica R; Burlakova T; Szeifert T; Burenkov A
    Nature; 2014 Nov; 515(7525):88-91. PubMed ID: 25327247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray flares from postmerger millisecond pulsars.
    Dai ZG; Wang XY; Wu XF; Zhang B
    Science; 2006 Feb; 311(5764):1127-9. PubMed ID: 16497927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface emission from neutron stars and implications for the physics of their interiors.
    Ozel F
    Rep Prog Phys; 2013 Jan; 76(1):016901. PubMed ID: 23234858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KOI-126: a triply eclipsing hierarchical triple with two low-mass stars.
    Carter JA; Fabrycky DC; Ragozzine D; Holman MJ; Quinn SN; Latham DW; Buchhave LA; Van Cleve J; Cochran WD; Cote MT; Endl M; Ford EB; Haas MR; Jenkins JM; Koch DG; Li J; Lissauer JJ; MacQueen PJ; Middour CK; Orosz JA; Rowe JF; Steffen JH; Welsh WF
    Science; 2011 Feb; 331(6017):562-5. PubMed ID: 21224439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun.
    Beltrán MT; Cesaroni R; Codella C; Testi L; Furuya RS; Olmi L
    Nature; 2006 Sep; 443(7110):427-9. PubMed ID: 17006508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleosynthetic signatures of the first stars.
    Frebel A; Aoki W; Christlieb N; Ando H; Asplund M; Barklem PS; Beers TC; Eriksson K; Fechner C; Fujimoto MY; Honda S; Kajino T; Minezaki T; Nomoto K; Norris JE; Ryan SG; Takada-Hidai M; Tsangarides S; Yoshii Y
    Nature; 2005 Apr; 434(7035):871-3. PubMed ID: 15829957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.