BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1645656)

  • 1. Multisite contacts involved in coupling of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein. Structural and functional studies by beta-receptor-site-specific synthetic peptides.
    Münch G; Dees C; Hekman M; Palm D
    Eur J Biochem; 1991 Jun; 198(2):357-64. PubMed ID: 1645656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a Gs-protein coupling domain to the beta-adrenoceptor using site-specific synthetic peptides. Carboxyl terminus of Gs alpha is involved in coupling to beta-adrenoceptors.
    Palm D; Münch G; Malek D; Dees C; Hekman M
    FEBS Lett; 1990 Feb; 261(2):294-8. PubMed ID: 2155823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of beta-adrenoceptor coupling domains to Gs-protein by site-specific synthetic peptides.
    Palm D; Münch G; Dees C; Hekman M
    FEBS Lett; 1989 Aug; 254(1-2):89-93. PubMed ID: 2550280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of AlF-4- and receptor-stimulated phospholipase C activity by G-protein beta gamma subunits.
    Boyer JL; Waldo GL; Evans T; Northup JK; Downes CP; Harden TK
    J Biol Chem; 1989 Aug; 264(23):13917-22. PubMed ID: 2503507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-adrenergic-receptor-mediated dissociation and membrane release of the Gs protein in S49 lymphoma-cell membranes. Dependence on Mg2+ and GTP.
    Ransnäs LA; Jasper JR; Leiber D; Insel PA
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):519-24. PubMed ID: 1315517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-protein-mediated activation of turkey erythrocyte phospholipase C by beta-adrenergic and P2y-purinergic receptors.
    Vaziri C; Downes CP
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):917-22. PubMed ID: 1352448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors.
    Rasenick MM; Watanabe M; Lazarevic MB; Hatta S; Hamm HE
    J Biol Chem; 1994 Aug; 269(34):21519-25. PubMed ID: 8063788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of catecholamine-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase.
    Asano T; Pedersen SE; Scott CW; Ross EM
    Biochemistry; 1984 Nov; 23(23):5460-7. PubMed ID: 6095899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.
    Ugur O; Onaran HO
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):765-76. PubMed ID: 9169611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes.
    Vauquelin G; Geynet P; Hanoune J; Strosberg AD
    Eur J Biochem; 1979 Aug; 98(2):543-56. PubMed ID: 226363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal tubular epithelial cells possess a novel 42-kilodalton guanine nucleotide-binding regulatory protein.
    Zhou J; Sims C; Chang CH; Berti-Mattera L; Hopfer U; Douglas J
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7532-5. PubMed ID: 2120702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of three stimulatory GTP-binding proteins. The large and small forms of Gs and the olfactory-specific G-protein, Golf.
    Jones DT; Masters SB; Bourne HR; Reed RR
    J Biol Chem; 1990 Feb; 265(5):2671-6. PubMed ID: 2105931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional activation of beta-adrenergic receptors by thiols in the presence or absence of agonists.
    Pedersen SE; Ross EM
    J Biol Chem; 1985 Nov; 260(26):14150-7. PubMed ID: 2997196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamine-stimulated guanosine 5'-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: kinetic analysis in reconstituted phospholipid vesicles.
    Asano T; Ross EM
    Biochemistry; 1984 Nov; 23(23):5467-71. PubMed ID: 6095900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin binding distinguishes between beta gamma subunits of activated G proteins and transducin.
    Mangels LA; Neubig RR; Hamm HE; Gnegy ME
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):683-90. PubMed ID: 1590758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The turkey erythrocyte beta-adrenergic receptor couples to both adenylate cyclase and phospholipase C via distinct G-protein alpha subunits.
    James SR; Vaziri C; Walker TR; Milligan G; Downes CP
    Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):359-64. PubMed ID: 7998968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes.
    Tolkovsky AM; Levitzki A
    Biochemistry; 1978 Sep; 17(18):3795. PubMed ID: 212105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor.
    De Lean A; Stadel JM; Lefkowitz RJ
    J Biol Chem; 1980 Aug; 255(15):7108-17. PubMed ID: 6248546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S111N mutation in the helical domain of human Gs(alpha) reduces its GDP/GTP exchange rate.
    Brito M; Guzmán L; Romo X; Soto X; Hinrichs MV; Olate J
    J Cell Biochem; 2002; 85(3):615-20. PubMed ID: 11968001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G protein antagonists. A novel hydrophobic peptide competes with receptor for G protein binding.
    Mukai H; Munekata E; Higashijima T
    J Biol Chem; 1992 Aug; 267(23):16237-43. PubMed ID: 1379592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.