BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16457933)

  • 1. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT; Rosborough JP; Kassabian L; Salami B
    Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manual versus mechanical cardiopulmonary resuscitation. An experimental study in pigs.
    Liao Q; Sjöberg T; Paskevicius A; Wohlfart B; Steen S
    BMC Cardiovasc Disord; 2010 Oct; 10():53. PubMed ID: 21029406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A remote-controlled automatic chest compression device capable of moving compression position during CPR: A pilot study in a mannequin and a swine model of cardiac arrest.
    Suh GJ; Kim T; Kim KS; Kwon WY; Kim H; Park H; Wang G; Park J; Hur S; Sim J; Kim K; Lee JC; Shin DA; Cho WS; Kim BJ; Kwon S; Lee YJ
    PLoS One; 2024; 19(1):e0297057. PubMed ID: 38241416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing CPR duration prior to first defibrillation does not improve return of spontaneous circulation or survival in a swine model of prolonged ventricular fibrillation.
    Rittenberger JC; Suffoletto B; Salcido D; Logue E; Menegazzi JJ
    Resuscitation; 2008 Oct; 79(1):155-60. PubMed ID: 18620793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High central venous pressure amplitude predicts successful defibrillation in a porcine model of cardiac arrest.
    Balzer C; Eagle SS; Yannopoulos D; Aufderheide TP; Riess ML
    Resuscitation; 2023 Apr; 185():109716. PubMed ID: 36736947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standardized post-resuscitation damage assessment of two mechanical chest compression devices: a prospective randomized large animal trial.
    Ruemmler R; Stein J; Duenges B; Renz M; Hartmann EK
    Scand J Trauma Resusc Emerg Med; 2021 Jun; 29(1):79. PubMed ID: 34090500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium nitroprusside enhanced cardiopulmonary resuscitation (SNPeCPR) improves vital organ perfusion pressures and carotid blood flow in a porcine model of cardiac arrest.
    Schultz J; Segal N; Kolbeck J; McKnite S; Caldwell E; Yannopoulos D
    Resuscitation; 2012 Mar; 83(3):374-7. PubMed ID: 21864483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled sequential elevation of the head and thorax combined with active compression decompression cardiopulmonary resuscitation and an impedance threshold device improves neurological survival in a porcine model of cardiac arrest.
    Moore JC; Salverda B; Rojas-Salvador C; Lick M; Debaty G; G Lurie K
    Resuscitation; 2021 Jan; 158():220-227. PubMed ID: 33027619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Left ventricular compressions improve return of spontaneous circulation and hemodynamics in a swine model of traumatic cardiopulmonary arrest.
    Anderson KL; Fiala KC; Castaneda MG; Boudreau SM; Araña AA; Bebarta VS
    J Trauma Acute Care Surg; 2018 Aug; 85(2):303-310. PubMed ID: 29613954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haemodynamic outcomes during piston-based mechanical CPR with or without active decompression in a porcine model of cardiac arrest.
    Steinberg MT; Olsen JA; Eriksen M; Neset A; Norseng PA; Kramer-Johansen J; Hardig BM; Wik L
    Scand J Trauma Resusc Emerg Med; 2018 Apr; 26(1):31. PubMed ID: 29690910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-arrest hypothermia: both cold liquid ventilation with perfluorocarbons and cold intravenous saline rapidly achieve hypothermia, but only cold liquid ventilation improves resumption of spontaneous circulation.
    Riter HG; Brooks LA; Pretorius AM; Ackermann LW; Kerber RE
    Resuscitation; 2009 May; 80(5):561-6. PubMed ID: 19249149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Abdominal Aortic and Junctional Tourniquet on chest compressions in a swine model of ventricular fibrillation.
    Hewitt CW; Pombo MA; Blough PE; Castaneda MG; Percival TJ; Rall JM
    Am J Emerg Med; 2021 Jul; 45():297-302. PubMed ID: 33046311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving post-cardiac arrest cerebral perfusion pressure by elevating the head and thorax.
    Duhem H; Moore JC; Rojas-Salvador C; Salverda B; Lick M; Pepe P; Labarere J; Debaty G; Lurie KG
    Resuscitation; 2021 Feb; 159():45-53. PubMed ID: 33385469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haemodynamic impact of aortic balloon occlusion combined with percutaneous left ventricular assist device during cardiopulmonary resuscitation in a swine model of cardiac arrest.
    Tiba MH; Nakashima T; McCracken BM; Hsu CH; Gottula AL; Greer NL; Cramer TA; Sutton NR; Ward KR; Neumar RW
    Resuscitation; 2023 Aug; 189():109885. PubMed ID: 37385400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coagulopathy during cardiac arrest and resuscitation in a swine model of electrically induced ventricular fibrillation.
    White NJ; Leong BS; Brueckner J; Martin EJ; Brophy DF; Peberdy MA; Ornato J; Ward KR
    Resuscitation; 2011 Jul; 82(7):925-31. PubMed ID: 21482008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of percutaneous ventricular assisted device on post-cardiac arrest myocardial dysfunction in swine model with prolonged cardiac arrest.
    Nakashima T; Hakam Tiba M; McCracken BM; Hsu CH; Gottula AL; Greer NL; Cramer TA; Sutton NR; Ward KR; Neumar RW
    Resuscitation; 2023 Dec; 193():110010. PubMed ID: 37884220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hemodynamic-directed approach to pediatric cardiopulmonary resuscitation (HD-CPR) improves survival.
    Morgan RW; Kilbaugh TJ; Shoap W; Bratinov G; Lin Y; Hsieh TC; Nadkarni VM; Berg RA; Sutton RM;
    Resuscitation; 2017 Feb; 111():41-47. PubMed ID: 27923692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaesthetic Postconditioning at the Initiation of CPR Improves Myocardial and Mitochondrial Function in a Pig Model of Prolonged Untreated Ventricular Fibrillation.
    Riess ML; Matsuura TR; Bartos JA; Bienengraeber M; Aldakkak M; McKnite SH; Rees JN; Aufderheide TP; Sarraf M; Neumar RW; Yannopoulos D
    Resuscitation; 2014 Dec; 85(12):1745-51. PubMed ID: 25281906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing a multicenter, preclinical consortium in resuscitation: A pilot experimental trial evaluating epinephrine in cardiac arrest.
    Lin S; Ramadeen A; Sundermann ML; Dorian P; Fink S; Halperin HR; Kiss A; Koller AC; Kudenchuk PJ; McCracken BM; Mohindra R; Morrison LJ; Neumar RW; Niemann JT; Salcido DD; Tiba MH; Youngquist ST; Zviman MM; Menegazzi JJ
    Resuscitation; 2022 Jun; 175():57-63. PubMed ID: 35472628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Left Ventricular Versus Traditional Chest Compressions in a Traumatic Pulseless Electrical Activity Model.
    Anderson KL; Evans JC; Castaneda MG; Boudreau SM; Maddry JK; Morgan JD
    Mil Med; 2022 Mar; 187(3-4):351-359. PubMed ID: 34143215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.