These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16457974)

  • 41. Human buccal absorption of flurbiprofen.
    Barsuhn CL; Olanoff LS; Gleason DD; Adkins EL; Ho NF
    Clin Pharmacol Ther; 1988 Aug; 44(2):225-31. PubMed ID: 3293876
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparative ex vivo drug permeation study of beta-blockers through porcine buccal mucosa.
    Amores S; Lauroba J; Calpena A; Colom H; Gimeno A; Domenech J
    Int J Pharm; 2014 Jul; 468(1-2):50-4. PubMed ID: 24727142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. TR146 cells grown on filters as a model of human buccal epithelium: III. Permeability enhancement by different pH values, different osmolality values, and bile salts.
    Nielsen HM; Rassing MR
    Int J Pharm; 1999 Aug; 185(2):215-25. PubMed ID: 10460917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of temperature on permeability of mucosa to water.
    van der Bijl P; Venter A; van Eyk AD; Thompson IO
    SADJ; 1998 Nov; 53(11):504-7. PubMed ID: 10518920
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and evaluation of an in vitro method for prediction of human drug absorption I. Assessment of artificial membrane composition.
    Corti G; Maestrelli F; Cirri M; Furlanetto S; Mura P
    Eur J Pharm Sci; 2006 Mar; 27(4):346-53. PubMed ID: 16359848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel flow through diffusion cell for assessing drug transport across the buccal mucosa in vitro.
    Lestari ML; Nicolazzo JA; Finnin BC
    J Pharm Sci; 2009 Dec; 98(12):4577-88. PubMed ID: 19408309
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Buccal absorption of ergotamine.
    Sutherland JM; Hooper WD; Eadie MJ; Tyrer JH
    J Neurol Neurosurg Psychiatry; 1974 Oct; 37(10):1116-20. PubMed ID: 4443807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correlation of in vitro and in vivo models for the oral absorption of peptide drugs.
    Föger F; Kopf A; Loretz B; Albrecht K; Bernkop-Schnürch A
    Amino Acids; 2008 Jun; 35(1):233-41. PubMed ID: 17726639
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The distribution of oral mucosal pH values in healthy saliva secretors.
    Aframian DJ; Davidowitz T; Benoliel R
    Oral Dis; 2006 Jul; 12(4):420-3. PubMed ID: 16792729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro transport of the steroidal glycoside P57 from Hoodia gordonii across excised porcine intestinal and buccal tissue.
    Vermaak I; Viljoen AM; Chen W; Hamman JH
    Phytomedicine; 2011 Jun; 18(8-9):783-7. PubMed ID: 21353512
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scaling of in vitro membrane permeability to predict P-glycoprotein-mediated drug absorption in vivo.
    Shirasaka Y; Masaoka Y; Kataoka M; Sakuma S; Yamashita S
    Drug Metab Dispos; 2008 May; 36(5):916-22. PubMed ID: 18276834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers].
    Ma L; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2007 Dec; 32(23):2523-7. PubMed ID: 18330249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of pH and nicotine concentration in oral moist snuff on mucosal changes and salivary pH in Swedish snuff users.
    Andersson G; Warfvinge G
    Swed Dent J; 2003; 27(2):67-75. PubMed ID: 12856395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mucin dispersions as a model for the oromucosal mucus layer in in vitro and ex vivo buccal permeability studies of small molecules.
    Marxen E; Mosgaard MD; Pedersen AML; Jacobsen J
    Eur J Pharm Biopharm; 2017 Dec; 121():121-128. PubMed ID: 28974436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The pharmacokinetic characteristics of drug absorption in the oral cavity].
    Lakin KM; Kats MM; Zorian EV; El'tsova ZI
    Farmakol Toksikol; 1989; 52(5):91-8. PubMed ID: 2689211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro evaluation of natural and methylated cyclodextrins as buccal permeation enhancing system for omeprazole delivery.
    Figueiras A; Hombach J; Veiga F; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2009 Feb; 71(2):339-45. PubMed ID: 18796330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Release of naltrexone on buccal mucosa: permeation studies, histological aspects and matrix system design.
    Giannola LI; De Caro V; Giandalia G; Siragusa MG; Tripodo C; Florena AM; Campisi G
    Eur J Pharm Biopharm; 2007 Sep; 67(2):425-33. PubMed ID: 17451927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Studies on water transport through the sweet cherry fruit surface. 11. FeCl3 decreases water permeability of polar pathways.
    Weichert H; Knoche M
    J Agric Food Chem; 2006 Aug; 54(17):6294-302. PubMed ID: 16910722
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relative bioavailability of the fentanyl effervescent buccal tablet (FEBT) 1,080 pg versus oral transmucosal fentanyl citrate 1,600 pg and dose proportionality of FEBT 270 to 1,300 microg: a single-dose, randomized, open-label, three-period study in healthy adult volunteers.
    Darwish M; Tempero K; Kirby M; Thompson J
    Clin Ther; 2006 May; 28(5):715-24. PubMed ID: 16861093
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Absorption of triterpenoid compounds from Indian bread (Poria cocos) across human intestinal epithelial (Caco-2) cells in vitro].
    Zheng Y; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2008 Jul; 33(13):1596-601. PubMed ID: 18837324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.