These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A P300-based brain-computer interface: initial tests by ALS patients. Sellers EW; Donchin E Clin Neurophysiol; 2006 Mar; 117(3):538-48. PubMed ID: 16461003 [TBL] [Abstract][Full Text] [Related]
3. How many people are able to control a P300-based brain-computer interface (BCI)? Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601 [TBL] [Abstract][Full Text] [Related]
4. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Sellers EW; Krusienski DJ; McFarland DJ; Vaughan TM; Wolpaw JR Biol Psychol; 2006 Oct; 73(3):242-52. PubMed ID: 16860920 [TBL] [Abstract][Full Text] [Related]
5. BCI Competition 2003--Data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications. Xu N; Gao X; Hong B; Miao X; Gao S; Yang F IEEE Trans Biomed Eng; 2004 Jun; 51(6):1067-72. PubMed ID: 15188880 [TBL] [Abstract][Full Text] [Related]
6. ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. Allison BZ; Pineda JA IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):110-3. PubMed ID: 12899248 [TBL] [Abstract][Full Text] [Related]
7. Motivation modulates the P300 amplitude during brain-computer interface use. Kleih SC; Nijboer F; Halder S; Kübler A Clin Neurophysiol; 2010 Jul; 121(7):1023-31. PubMed ID: 20188627 [TBL] [Abstract][Full Text] [Related]
8. An efficient P300-based brain-computer interface for disabled subjects. Hoffmann U; Vesin JM; Ebrahimi T; Diserens K J Neurosci Methods; 2008 Jan; 167(1):115-25. PubMed ID: 17445904 [TBL] [Abstract][Full Text] [Related]
9. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Kübler A; Furdea A; Halder S; Hammer EM; Nijboer F; Kotchoubey B Ann N Y Acad Sci; 2009 Mar; 1157():90-100. PubMed ID: 19351359 [TBL] [Abstract][Full Text] [Related]
10. Brain-computer interface (BCI) operation: signal and noise during early training sessions. McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184 [TBL] [Abstract][Full Text] [Related]
11. An auditory oddball (P300) spelling system for brain-computer interfaces. Furdea A; Halder S; Krusienski DJ; Bross D; Nijboer F; Birbaumer N; Kübler A Psychophysiology; 2009 May; 46(3):617-25. PubMed ID: 19170946 [TBL] [Abstract][Full Text] [Related]
12. Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis. Pires G; Nunes U; Castelo-Branco M J Neurosci Methods; 2011 Feb; 195(2):270-81. PubMed ID: 21129404 [TBL] [Abstract][Full Text] [Related]
13. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli]. Ganin IP; Kaplan AIa Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(1):32-40. PubMed ID: 25707256 [TBL] [Abstract][Full Text] [Related]
16. Effects of resting heart rate variability on performance in the P300 brain-computer interface. Kaufmann T; Vögele C; Sütterlin S; Lukito S; Kübler A Int J Psychophysiol; 2012 Mar; 83(3):336-41. PubMed ID: 22172335 [TBL] [Abstract][Full Text] [Related]
17. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977 [TBL] [Abstract][Full Text] [Related]
18. Optimizing the P300-based brain-computer interface: current status, limitations and future directions. Mak JN; Arbel Y; Minett JW; McCane LM; Yuksel B; Ryan D; Thompson D; Bianchi L; Erdogmus D J Neural Eng; 2011 Apr; 8(2):025003. PubMed ID: 21436525 [TBL] [Abstract][Full Text] [Related]
19. Overlap and refractory effects in a brain-computer interface speller based on the visual P300 event-related potential. Martens SM; Hill NJ; Farquhar J; Schölkopf B J Neural Eng; 2009 Apr; 6(2):026003. PubMed ID: 19255462 [TBL] [Abstract][Full Text] [Related]
20. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. Trejo LJ; Rosipal R; Matthews B IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]