These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16458080)

  • 1. Identification of candidate genes at the corticoseptal boundary during development.
    Shen WB; Plachez C; Mongi AS; Richards LJ
    Gene Expr Patterns; 2006 Jun; 6(5):471-81. PubMed ID: 16458080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways.
    Silver J; Lorenz SE; Wahlsten D; Coughlin J
    J Comp Neurol; 1982 Sep; 210(1):10-29. PubMed ID: 7130467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of midline glial populations at the corticoseptal boundary.
    Shu T; Puche AC; Richards LJ
    J Neurobiol; 2003 Oct; 57(1):81-94. PubMed ID: 12973830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human.
    Richards LJ; Plachez C; Ren T
    Clin Genet; 2004 Oct; 66(4):276-89. PubMed ID: 15355427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenatal formation of the normal mouse corpus callosum: a quantitative study with carbocyanine dyes.
    Ozaki HS; Wahlsten D
    J Comp Neurol; 1992 Sep; 323(1):81-90. PubMed ID: 1430316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Death of the subcallosal glial sling is correlated with formation of the cavum septi pellucidi.
    Hankin MH; Schneider BF; Silver J
    J Comp Neurol; 1988 Jun; 272(2):191-202. PubMed ID: 2456310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel features of boundary cap cells revealed by the analysis of newly identified molecular markers.
    Coulpier F; Le Crom S; Maro GS; Manent J; Giovannini M; Maciorowski Z; Fischer A; Gessler M; Charnay P; Topilko P
    Glia; 2009 Oct; 57(13):1450-7. PubMed ID: 19243017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice.
    Shu T; Butz KG; Plachez C; Gronostajski RM; Richards LJ
    J Neurosci; 2003 Jan; 23(1):203-12. PubMed ID: 12514217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gli3 is required in Emx1+ progenitors for the development of the corpus callosum.
    Amaniti EM; Hasenpusch-Theil K; Li Z; Magnani D; Kessaris N; Mason JO; Theil T
    Dev Biol; 2013 Apr; 376(2):113-24. PubMed ID: 23396189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation.
    Sánchez-Camacho C; Ortega JA; Ocaña I; Alcántara S; Bovolenta P
    Dev Neurobiol; 2011 May; 71(5):337-50. PubMed ID: 21485009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of candidate genes for controlling development of the basilar pons by differential display PCR.
    Gesemann M; Litwack ED; Yee KT; Christen U; O'Leary DD
    Mol Cell Neurosci; 2001 Jul; 18(1):1-12. PubMed ID: 11461149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of intersecting CNS fiber tracts: the corpus callosum and its perforating fiber pathway.
    Hankin MH; Silver J
    J Comp Neurol; 1988 Jun; 272(2):177-90. PubMed ID: 3397407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Histogenesis of the corpus callosum].
    Gelot A; Esperandieu O; Pompidou A
    Neurochirurgie; 1998 May; 44(1 Suppl):61-73. PubMed ID: 9757325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain.
    Ren T; Anderson A; Shen WB; Huang H; Plachez C; Zhang J; Mori S; Kinsman SL; Richards LJ
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Feb; 288(2):191-204. PubMed ID: 16411247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses.
    Lent R; Uziel D; Baudrimont M; Fallet C
    J Comp Neurol; 2005 Mar; 483(4):375-82. PubMed ID: 15700272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A selective defect in the glial wedge as part of the neuroepithelium disruption in hydrocephalus development in the mouse hyh model is associated with complete corpus callosum dysgenesis.
    Rodríguez-Pérez LM; López-de-San-Sebastián J; de Diego I; Smith A; Roales-Buján R; Jiménez AJ; Paez-Gonzalez P
    Front Cell Neurosci; 2024; 18():1330412. PubMed ID: 38450283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical axon guidance by the glial wedge during the development of the corpus callosum.
    Shu T; Richards LJ
    J Neurosci; 2001 Apr; 21(8):2749-58. PubMed ID: 11306627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice.
    Piper M; Moldrich RX; Lindwall C; Little E; Barry G; Mason S; Sunn N; Kurniawan ND; Gronostajski RM; Richards LJ
    Neural Dev; 2009 Dec; 4():43. PubMed ID: 19961580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo.
    Shu T; Sundaresan V; McCarthy MM; Richards LJ
    J Neurosci; 2003 Sep; 23(22):8176-84. PubMed ID: 12954881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RA-GEF-1 (Rapgef2) is essential for proper development of the midline commissures.
    Bilasy SE; Satoh T; Terashima T; Kataoka T
    Neurosci Res; 2011 Nov; 71(3):200-9. PubMed ID: 21864586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.