These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16458196)

  • 1. Redox-regulated cochaperone activity of the human DnaJ homolog Hdj2.
    Choi HI; Lee SP; Kim KS; Hwang CY; Lee YR; Chae SK; Kim YS; Chae HZ; Kwon KS
    Free Radic Biol Med; 2006 Feb; 40(4):651-9. PubMed ID: 16458196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct association of hepatopoietin with thioredoxin constitutes a redox signal transduction in activation of AP-1/NF-kappaB.
    Li Y; Liu W; Xing G; Tian C; Zhu Y; He F
    Cell Signal; 2005 Aug; 17(8):985-96. PubMed ID: 15894171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.
    Karimpour S; Lou J; Lin LL; Rene LM; Lagunas L; Ma X; Karra S; Bradbury CM; Markovina S; Goswami PC; Spitz DR; Hirota K; Kalvakolanu DV; Yodoi J; Gius D
    Oncogene; 2002 Sep; 21(41):6317-27. PubMed ID: 12214272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ.
    Shi YY; Tang W; Hao SF; Wang CC
    Biochemistry; 2005 Feb; 44(5):1683-9. PubMed ID: 15683252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2.
    El Hajjaji H; Dumoulin M; Matagne A; Colau D; Roos G; Messens J; Collet JF
    J Mol Biol; 2009 Feb; 386(1):60-71. PubMed ID: 19073194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.
    Men L; Wang Y
    J Proteome Res; 2007 Jan; 6(1):216-25. PubMed ID: 17203966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox control of caspase-3 activity by thioredoxin and other reduced proteins.
    Baker A; Santos BD; Powis G
    Biochem Biophys Res Commun; 2000 Feb; 268(1):78-81. PubMed ID: 10652216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A redox-dependent function of thioredoxin is necessary to sustain a rapid rate of DNA synthesis in yeast.
    Muller EG
    Arch Biochem Biophys; 1995 Apr; 318(2):356-61. PubMed ID: 7733663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide.
    Melkani GC; Kestetter J; Sielaff R; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2006 Aug; 347(2):534-9. PubMed ID: 16828704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae.
    Pujol-Carrion N; Belli G; Herrero E; Nogues A; de la Torre-Ruiz MA
    J Cell Sci; 2006 Nov; 119(Pt 21):4554-64. PubMed ID: 17074835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc fingers as biologic redox switches?
    Kröncke KD; Klotz LO
    Antioxid Redox Signal; 2009 May; 11(5):1015-27. PubMed ID: 19132878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cys redox reactions and metal binding of a Cys2His2 zinc finger.
    Larabee JL; Hocker JR; Hanas JS
    Arch Biochem Biophys; 2005 Feb; 434(1):139-49. PubMed ID: 15629117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of redox conditions in the nucleus.
    Go YM; Pohl J; Jones DP
    Methods Mol Biol; 2009; 464():303-17. PubMed ID: 18951192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Escherichia coli thioredoxin homolog YbbN/Trxsc is a chaperone and a weak protein oxidoreductase.
    Caldas T; Malki A; Kern R; Abdallah J; Richarme G
    Biochem Biophys Res Commun; 2006 May; 343(3):780-6. PubMed ID: 16563353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of thioredoxin and glutaredoxin target proteins by identifying reversibly oxidized cysteinyl residues.
    Lee HM; Dietz KJ; Hofestädt R
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae.
    Wang Z; Feng LS; Matskevich V; Venkataraman K; Parasuram P; Laity JH
    J Mol Biol; 2006 Apr; 357(4):1167-83. PubMed ID: 16483601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the redox regulation of the phosphoglucan phosphatase SEX4 involved in starch degradation.
    Silver DM; Silva LP; Issakidis-Bourguet E; Glaring MA; Schriemer DC; Moorhead GB
    FEBS J; 2013 Jan; 280(2):538-48. PubMed ID: 22372537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific and reversible inactivation of Phycomyces blakesleeanus isocitrate lyase by ascorbate-iron: role of two redox-active cysteines.
    Rúa J; Soler J; Busto F; de Arriaga D
    Fungal Genet Biol; 2002 Apr; 35(3):223-34. PubMed ID: 11929212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.