BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 16459101)

  • 1. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial microscopy for the study of protein-membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM.
    Oreopoulos J; Yip CM
    J Struct Biol; 2009 Oct; 168(1):21-36. PubMed ID: 19268707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An atomic force microscopy study of the interactions between indolicidin and supported planar bilayers.
    Askou HJ; Jakobsen RN; Fojan P
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4360-9. PubMed ID: 19049026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles.
    Rozek A; Friedrich CL; Hancock RE
    Biochemistry; 2000 Dec; 39(51):15765-74. PubMed ID: 11123901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes.
    Chiantia S; Ries J; Kahya N; Schwille P
    Chemphyschem; 2006 Nov; 7(11):2409-18. PubMed ID: 17051578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramide promotes restructuring of model raft membranes.
    Johnston I; Johnston LJ
    Langmuir; 2006 Dec; 22(26):11284-9. PubMed ID: 17154617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking peptide-membrane interactions: insights from in situ coupled confocal-atomic force microscopy imaging of NAP-22 peptide insertion and assembly.
    Shaw JE; Epand RF; Sinnathamby K; Li Z; Bittman R; Epand RM; Yip CM
    J Struct Biol; 2006 Sep; 155(3):458-69. PubMed ID: 16889981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remodeling of ordered membrane domains by GPI-anchored intestinal alkaline phosphatase.
    Giocondi MC; Besson F; Dosset P; Milhiet PE; Le Grimellec C
    Langmuir; 2007 Aug; 23(18):9358-64. PubMed ID: 17661499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase segregation of untethered zwitterionic model lipid bilayers observed on mercaptoundecanoic-acid-modified gold by AFM imaging and force mapping.
    Ip S; Li JK; Walker GC
    Langmuir; 2010 Jul; 26(13):11060-70. PubMed ID: 20387821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K.
    Balhara V; Schmidt R; Gorr SU; Dewolf C
    Biochim Biophys Acta; 2013 Sep; 1828(9):2193-203. PubMed ID: 23747365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/cholesterol bilayers.
    Bao R; Li L; Qiu F; Yang Y
    J Phys Chem B; 2011 May; 115(19):5923-9. PubMed ID: 21526782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct AFM observation of saposin C-induced membrane domains in lipid bilayers: from simple to complex lipid mixtures.
    You HX; Qi X; Yu L
    Chem Phys Lipids; 2004 Nov; 132(1):15-22. PubMed ID: 15530444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale imaging of domains in supported lipid membranes.
    Johnston LJ
    Langmuir; 2007 May; 23(11):5886-95. PubMed ID: 17428076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic generation of ceramide induces membrane restructuring: Correlated AFM and fluorescence imaging of supported bilayers.
    Ira ; Zou S; Ramirez DM; Vanderlip S; Ogilvie W; Jakubek ZJ; Johnston LJ
    J Struct Biol; 2009 Oct; 168(1):78-89. PubMed ID: 19348948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.