These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 16459445)
1. Albumin and fibronectin protein adsorption on CO2-laser-modified biograde stainless steel. Hao L; Lawrence J Proc Inst Mech Eng H; 2006 Jan; 220(1):47-55. PubMed ID: 16459445 [TBL] [Abstract][Full Text] [Related]
2. On the role of CO2 laser treatment in the human serum albumin and human plasma fibronectin adsorption on zirconia (MGO-PSZ) bioceramic surface. Hao L; Lawrence J J Biomed Mater Res A; 2004 Jun; 69(4):748-56. PubMed ID: 15162417 [TBL] [Abstract][Full Text] [Related]
3. Wettability modification and the subsequent manipulation of protein adsorption on a Ti6Al4V alloy by means of CO2 laser surface treatment. Hao L; Lawrence J J Mater Sci Mater Med; 2007 May; 18(5):807-17. PubMed ID: 17171456 [TBL] [Abstract][Full Text] [Related]
4. Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment. Hao L; Lawrence J; Phua YF; Chian KS; Lim GC; Zheng HY J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):148-56. PubMed ID: 15627247 [TBL] [Abstract][Full Text] [Related]
5. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption. Kang CK; Lee YS J Mater Sci Mater Med; 2007 Jul; 18(7):1389-98. PubMed ID: 17277988 [TBL] [Abstract][Full Text] [Related]
6. An electrochemical method for functionalization of a 316L stainless steel surface being used as a stent in coronary surgery: irreversible immobilization of fibronectin for the enhancement of endothelial cell attachment. Harvey J; Bergdahl A; Dadafarin H; Ling L; Davis EC; Omanovic S Biotechnol Lett; 2012 Jun; 34(6):1159-65. PubMed ID: 22361964 [TBL] [Abstract][Full Text] [Related]
7. The adsorption of human serum albumin (HSA) on CO2 laser modified magnesia partially stabilised zirconia (MgO-PSZ). Hao L; Lawrence J Colloids Surf B Biointerfaces; 2004 Mar; 34(2):87-94. PubMed ID: 15261078 [TBL] [Abstract][Full Text] [Related]
8. Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Zhang F; Kang ET; Neoh KG; Wang P; Tan KL Biomaterials; 2001 Jun; 22(12):1541-8. PubMed ID: 11374453 [TBL] [Abstract][Full Text] [Related]
9. Protein adsorption and wetting of the protein adsorbed surfaces studied by a new type of laser reflectometer. Matsumura H; Saburi M Colloids Surf B Biointerfaces; 2006 Feb; 47(2):146-52. PubMed ID: 16426821 [TBL] [Abstract][Full Text] [Related]
10. Bovine Serum Albumin and Fibrinogen Adsorption at the 316L Stainless Steel/Aqueous Interface. Wood MH; Payagalage CG; Geue T J Phys Chem B; 2018 May; 122(19):5057-5065. PubMed ID: 29709171 [TBL] [Abstract][Full Text] [Related]
11. Laser surface modification of 316L stainless steel. Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086 [TBL] [Abstract][Full Text] [Related]
12. Quantification of fibrinogen adsorption onto 316L stainless steel. Gettens RT; Gilbert JL J Biomed Mater Res A; 2007 May; 81(2):465-73. PubMed ID: 17133446 [TBL] [Abstract][Full Text] [Related]
13. Chemiluminescence-based detection and comparison of protein amounts adsorbed on differently modified silica surfaces. Müller R; Hiller KA; Schmalz G; Ruhl S Anal Biochem; 2006 Dec; 359(2):194-202. PubMed ID: 17087913 [TBL] [Abstract][Full Text] [Related]
14. Control of fibronectin displacement on polymer substrates to influence endothelial cell behaviour. Renner L; Jørgensen B; Markowski M; Salchert K; Werner C; Pompe T J Mater Sci Mater Med; 2004 Apr; 15(4):387-90. PubMed ID: 15332604 [TBL] [Abstract][Full Text] [Related]
15. Cytokine production and protein adsorption in a stainless steel filter used for leukocyte reduction. Yamane S; Yamaji K; Niimi Y; Sueoka A; Nosé Y; Suzuki M ASAIO J; 1996; 42(5):M642-5. PubMed ID: 8944959 [TBL] [Abstract][Full Text] [Related]
16. Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility. Müller R; Abke J; Schnell E; Macionczyk F; Gbureck U; Mehrl R; Ruszczak Z; Kujat R; Englert C; Nerlich M; Angele P Biomaterials; 2005 Dec; 26(34):6962-72. PubMed ID: 15967497 [TBL] [Abstract][Full Text] [Related]
17. Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Hedberg YS; Killian MS; Blomberg E; Virtanen S; Schmuki P; Odnevall Wallinder I Langmuir; 2012 Nov; 28(47):16306-17. PubMed ID: 23116183 [TBL] [Abstract][Full Text] [Related]
18. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite. Balla VK; Das M; Bose S; Ram GD; Manna I Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4594-8. PubMed ID: 24094165 [TBL] [Abstract][Full Text] [Related]
19. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents. Bayram C; Mizrak AK; Aktürk S; Kurşaklioğlu H; Iyisoy A; Ifran A; Denkbaş EB Biomed Mater; 2010 Oct; 5(5):055007. PubMed ID: 20844318 [TBL] [Abstract][Full Text] [Related]
20. Biological effects of sol-gel derived ZrO2 and SiO2/ZrO2 coatings on stainless steel surface--In vitro model using mesenchymal stem cells. Smieszek A; Donesz-Sikorska A; Grzesiak J; Krzak J; Marycz K J Biomater Appl; 2014 Nov; 29(5):699-714. PubMed ID: 25074359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]