BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16459583)

  • 1. Characterization of supported solid thin films of Laponite clay. Intercalation of rhodamine 6G laser dye.
    Martínez Martínez V; López Arbeloa F; Bañuelos Prieto J; Arbeloa López T; López Arbeloa I
    Langmuir; 2004 Jul; 20(14):5709-17. PubMed ID: 16459583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of fluorescent R6G dye into organophilic C12TMA laponite films.
    Salleres S; Arbeloa FL; Martínez V; Arbeloa T; Arbeloa IL
    J Colloid Interface Sci; 2008 May; 321(1):212-9. PubMed ID: 18272169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminescence properties of rhodamine 6G intercalated in surfactant/clay hybrid thin solid films.
    Sasai R; Iyi N; Fujita T; Arbeloa FL; Martinez VM; Takagi K; Itoh H
    Langmuir; 2004 May; 20(11):4715-9. PubMed ID: 15969187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the arrangements of R6G molecules in organophilic C12TMA/lap clay films for low dye loadings.
    Salleres S; López Arbeloa F; Martínez Martínez V; Arbeloa T; López Arbeloa I
    Langmuir; 2010 Jan; 26(2):930-7. PubMed ID: 20067308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy.
    Martínez Martínez V; López Arbeloa F; Bañuelos Prieto J; López Arbeloa I
    J Phys Chem B; 2005 Apr; 109(15):7443-50. PubMed ID: 16851853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of rhodamine 6G with different types of clay minerals.
    Li Z; Potter N; Rasmussen J; Weng J; Lv G
    Chemosphere; 2018 Jul; 202():127-135. PubMed ID: 29567610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humidity-dependent reversible aggregation of rhodamine 6G dye immobilized within layered niobate K4Nb6O17.
    Shinozaki R; Nakato T
    Langmuir; 2004 Aug; 20(18):7583-8. PubMed ID: 15323505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for modulating the luminescence properties of pyronin Y dye-clay films: an experimental and theoretical study.
    Epelde-Elezcano N; Martínez-Martínez V; Duque-Redondo E; Temiño I; Manzano H; López-Arbeloa I
    Phys Chem Chem Phys; 2016 Mar; 18(12):8730-8. PubMed ID: 26954470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nano-clay platelets on the J-aggregation of thiacyanine dye organized in Langmuir-Blodgett films: a spectroscopic investigation.
    Bhattacharjee D; Hussain SA; Chakraborty S; Schoonheydt RA
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep; 77(1):232-7. PubMed ID: 20541457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties.
    Vanamudan A; Pamidimukkala P
    Int J Biol Macromol; 2015 Mar; 74():127-35. PubMed ID: 25526692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
    Zehentbauer FM; Moretto C; Stephen R; Thevar T; Gilchrist JR; Pokrajac D; Richard KL; Kiefer J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():147-51. PubMed ID: 24239710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence Resonance Energy Transfer between organic dyes adsorbed onto nano-clay and Langmuir-Blodgett (LB) films.
    Hussain SA; Chakraborty S; Bhattacharjee D; Schoonheydt RA
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Feb; 75(2):664-70. PubMed ID: 20018558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites.
    Vogel R; Meredith P; Harvey MD; Rubinsztein-Dunlop H
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jan; 60(1-2):245-9. PubMed ID: 14670484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of fluorescence with polarized light to evaluate the orientation of dyes adsorbed in layered materials.
    Martínez V; Salleres S; Bañuelos J; Arbeloa FL
    J Fluoresc; 2006 Mar; 16(2):233-40. PubMed ID: 16470350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation.
    Dvininov E; Popovici E; Pode R; Cocheci L; Barvinschi P; Nica V
    J Hazard Mater; 2009 Aug; 167(1-3):1050-6. PubMed ID: 19250741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coulombic interactions on the deposition and rotational mobility distributions of dyes in polyelectrolyte multilayer thin films.
    Li Y; Yip WT
    Langmuir; 2004 Dec; 20(25):11039-45. PubMed ID: 15568856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.
    Lange JJ; Collinson MM; Culbertson CT; Higgins DA
    Anal Chem; 2009 Dec; 81(24):10089-96. PubMed ID: 19928808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guest aggregation within poly(L-lactic acid)/pluronic P104 thin films.
    Steves JM; Tan LT; Gardella JA; Hard R; Hicks WL; Cartwright AN; Koc B; Bright FV
    Appl Spectrosc; 2008 Mar; 62(3):290-4. PubMed ID: 18339236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the adsorptive behavior of water-soluble dye molecules (rhodamine 6G) at the air-water interface using confocal fluorescence microscope.
    Zheng XY; Harata A; Ogawa T
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Feb; 57(2):315-22. PubMed ID: 11206566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Langmuir-Blodgett organoclay films using X-ray reflectivity and atomic force microscopy.
    Koo J; Park S; Satija S; Tikhonov A; Sokolov JC; Rafailovich MH; Koga T
    J Colloid Interface Sci; 2008 Feb; 318(1):103-9. PubMed ID: 17942107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.