BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 16459831)

  • 1. Application of hydrothermal reaction for excess sludge reuse as carbon sources in biological phosphorus removal.
    Kim K; Fujita M; Daimon H; Fujie K
    Water Sci Technol; 2005; 52(10-11):533-41. PubMed ID: 16459831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery.
    Saktaywin W; Tsuno H; Nagare H; Soyama T; Weerapakkaroon J
    Water Res; 2005 Mar; 39(5):902-10. PubMed ID: 15743637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal.
    Wu G; Rodgers M
    Water Sci Technol; 2010; 61(10):2433-41. PubMed ID: 20453315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal.
    Rodgers M; Wu G
    Bioresour Technol; 2010 Feb; 101(3):1049-53. PubMed ID: 19765985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience from 10 years of full-scale operation with enhanced biological phosphorus removal at Oresundsverket.
    Tykesson E; Jönsson LE; la Cour Jansen J
    Water Sci Technol; 2005; 52(12):151-9. PubMed ID: 16477982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of coagulant amount added to activated sludge for phosphorus removal.
    Nakajima J; Mishima I
    Water Sci Technol; 2004; 50(7):287-92. PubMed ID: 15553488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of different carbon supplements on phosphorus removal in low C/P ratio industrial wastewater.
    Chuang SH; Chang WC; Huang YH; Tseng CC; Tai CC
    Bioresour Technol; 2011 May; 102(9):5461-5. PubMed ID: 21183336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge.
    Liu C; Xiao B; Dauta A; Peng G; Liu S; Hu Z
    Bioresour Technol; 2009 Dec; 100(24):6217-22. PubMed ID: 19648002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermochemical treatment of sewage sludge ashes for phosphorus recovery.
    Adam C; Peplinski B; Michaelis M; Kley G; Simon FG
    Waste Manag; 2009 Mar; 29(3):1122-8. PubMed ID: 19036571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal.
    Soares A; Kampas P; Maillard S; Wood E; Brigg J; Tillotson M; Parsons SA; Cartmell E
    J Hazard Mater; 2010 Mar; 175(1-3):733-9. PubMed ID: 19932559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling.
    Lesjean B; Gnirss R; Adam C; Kraume M; Luck F
    Water Sci Technol; 2003; 48(1):87-94. PubMed ID: 12926624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification.
    Kim TH; Nam YK; Park C; Lee M
    Bioresour Technol; 2009 Dec; 100(23):5694-9. PubMed ID: 19596570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of primary sludge fermentation products on mass balance for biological treatment.
    Ubay-Cokgor E; Oktay S; Zengin GE; Artan N; Orhon D
    Water Sci Technol; 2005; 51(11):105-14. PubMed ID: 16114623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method.
    Kajitvichyanukul P; Suntronvipart N
    J Hazard Mater; 2006 Nov; 138(2):384-91. PubMed ID: 16938387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.
    Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW
    Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment.
    Rocher M; Roux G; Goma G; Begue AP; Louvel L; Rols JL
    Water Sci Technol; 2001; 44(2-3):437-44. PubMed ID: 11548016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ozonolysate of excess sludge as a carbon source in an enhanced biological phosphorus removal for low strength wastewater.
    Park KY; Lee JW; Song KG; Ahn KH
    Bioresour Technol; 2011 Feb; 102(3):2462-7. PubMed ID: 21109429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 3,3',4',5-tetrachlorosalicylanilide on reduction of excess sludge and nitrogen removal in biological wastewater treatment process.
    Rho S; Nam GN; Shin JY; Jahng D
    J Microbiol Biotechnol; 2007 Jul; 17(7):1183-90. PubMed ID: 18051331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.