BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16460005)

  • 1. Structure, function, and wavelength selection in blue-absorbing proteorhodopsin.
    Hillebrecht JR; Galan J; Rangarajan R; Ramos L; McCleary K; Ward DE; Stuart JA; Birge RR
    Biochemistry; 2006 Feb; 45(6):1579-90. PubMed ID: 16460005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of spectral tuning in sensory rhodopsin II.
    Ren L; Martin CH; Wise KJ; Gillespie NB; Luecke H; Lanyi JK; Spudich JL; Birge RR
    Biochemistry; 2001 Nov; 40(46):13906-14. PubMed ID: 11705380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of spectral tuning in green-absorbing proteorhodopsin.
    Rangarajan R; Galan JF; Whited G; Birge RR
    Biochemistry; 2007 Nov; 46(44):12679-86. PubMed ID: 17927209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin.
    Wang WW; Sineshchekov OA; Spudich EN; Spudich JL
    J Biol Chem; 2003 Sep; 278(36):33985-91. PubMed ID: 12821661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy reveals direct chromophore interactions in the Leu/Gln105 spectral tuning switch of proteorhodopsins.
    Kralj JM; Spudich EN; Spudich JL; Rothschild KJ
    J Phys Chem B; 2008 Sep; 112(37):11770-6. PubMed ID: 18717545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation state of Glu142 differs in the green- and blue-absorbing variants of proteorhodopsin.
    Kralj JM; Bergo VB; Amsden JJ; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 2008 Mar; 47(11):3447-53. PubMed ID: 18284210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae.
    Ogren JI; Mamaev S; Russano D; Li H; Spudich JL; Rothschild KJ
    Biochemistry; 2014 Jun; 53(24):3961-70. PubMed ID: 24869998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different structural changes occur in blue- and green-proteorhodopsins during the primary photoreaction.
    Amsden JJ; Kralj JM; Bergo VB; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 2008 Nov; 47(44):11490-8. PubMed ID: 18842006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weakened coupling of conserved arginine to the proteorhodopsin chromophore and its counterion implies structural differences from bacteriorhodopsin.
    Partha R; Krebs R; Caterino TL; Braiman MS
    Biochim Biophys Acta; 2005 Jun; 1708(1):6-12. PubMed ID: 15949979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteorhodopsin is a light-driven proton pump with variable vectoriality.
    Friedrich T; Geibel S; Kalmbach R; Chizhov I; Ataka K; Heberle J; Engelhard M; Bamberg E
    J Mol Biol; 2002 Aug; 321(5):821-38. PubMed ID: 12206764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function.
    Choi AR; Kim SY; Yoon SR; Bae K; Jung KH
    J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic.
    Dioumaev AK; Wang JM; Bálint Z; Váró G; Lanyi JK
    Biochemistry; 2003 Jun; 42(21):6582-7. PubMed ID: 12767242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates.
    Suzuki D; Sudo Y; Furutani Y; Takahashi H; Homma M; Kandori H
    Biochemistry; 2008 Dec; 47(48):12750-9. PubMed ID: 18991393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes.
    Ran T; Ozorowski G; Gao Y; Sineshchekov OA; Wang W; Spudich JL; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1965-80. PubMed ID: 24100316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent photoisomerization of retinal in proteorhodopsin.
    Huber R; Köhler T; Lenz MO; Bamberg E; Kalmbach R; Engelhard M; Wachtveitl J
    Biochemistry; 2005 Feb; 44(6):1800-6. PubMed ID: 15697205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge.
    Spudich EN; Zhang W; Alam M; Spudich JL
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4960-5. PubMed ID: 9144172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75.
    Furutani Y; Kawanabe A; Jung KH; Kandori H
    Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Insights into the Mechanism of Wavelength Regulation in Blue-Absorbing Proteorhodopsin.
    Lee C; Sekharan S; Mertz B
    J Phys Chem B; 2019 Dec; 123(50):10631-10641. PubMed ID: 31757123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.