These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16460055)

  • 1. Controlling chemical reactivity at solid-solution interfaces by means of hydrophobic magnetic nanoparticles.
    Willner I; Katz E
    Langmuir; 2006 Feb; 22(4):1409-19. PubMed ID: 16460055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetoswitchable reactions of DNA monolayers on electrodes: gating the processes by hydrophobic magnetic nanoparticles.
    Katz E; Weizmann Y; Willner I
    J Am Chem Soc; 2005 Jun; 127(25):9191-200. PubMed ID: 15969597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: control of diffusional and surface-confined electrochemical processes.
    Katz E; Baron R; Willner I
    J Am Chem Soc; 2005 Mar; 127(11):4060-70. PubMed ID: 15771543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetoswitchable controlled hydrophilicity/hydrophobicity of electrode surfaces using alkyl-chain-functionalized magnetic particles: application for switchable electrochemistry.
    Katz E; Sheeney-Haj-Ichia L; Basnar B; Felner I; Willner I
    Langmuir; 2004 Oct; 20(22):9714-9. PubMed ID: 15491206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching of directions of bioelectrocatalytic currents and photocurrents at electrode surfaces by using hydrophobic magnetic nanoparticles.
    Katz E; Willner I
    Angew Chem Int Ed Engl; 2005 Jul; 44(30):4791-4. PubMed ID: 15995995
    [No Abstract]   [Full Text] [Related]  

  • 7. Self-assembly of semiconductor quantum-dots on electrodes for photoelectrochemical biosensing.
    Freeman R; Gill R; Beissenhirtz M; Willner I
    Photochem Photobiol Sci; 2007 Apr; 6(4):416-22. PubMed ID: 17404636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconductor quantum dots for bioanalysis.
    Gill R; Zayats M; Willner I
    Angew Chem Int Ed Engl; 2008; 47(40):7602-25. PubMed ID: 18810756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic magnetic nanoparticles induce selective bioelectrocatalysis.
    Katz E; Willner I
    Chem Commun (Camb); 2005 Aug; (32):4089-91. PubMed ID: 16091809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magneto-switchable electrocatalytic and bioelectrocatalytic transformations.
    Katz E; Sheeney-Haj-Ichia L; Willner I
    Chemistry; 2002 Sep; 8(18):4138-48. PubMed ID: 12298004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-enzyme hybrid systems for nanobiotechnology.
    Willner I; Basnar B; Willner B
    FEBS J; 2007 Jan; 274(2):302-9. PubMed ID: 17181543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap.
    Ranganathan S; Guo R; Murray RW
    Langmuir; 2007 Jun; 23(13):7372-7. PubMed ID: 17508765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid deposition of hydrophobic nanoparticle monolayers onto hydrophilic surfaces from liquid-liquid interfaces.
    Kowalczyk B; Apodaca MM; Soh S; Grzybowski BA
    Langmuir; 2009 Nov; 25(22):12855-9. PubMed ID: 19852509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical and optical applications of semiconductor quantum dots for bioanalysis.
    Zayats M; Willner I
    Adv Biochem Eng Biotechnol; 2008; 109():255-83. PubMed ID: 18004517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of electrochemical single-electron-transfer events of gold nanoparticles in aqueous solution in the presence of both ammonium and sulfonate surface-active agents.
    Nakai M; Yamanoi Y; Nishimori Y; Yonezawa T; Nishihara H
    Angew Chem Int Ed Engl; 2008; 47(35):6699-702. PubMed ID: 18646032
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecule-nanoparticle hybrid systems for bioelectronic applications.
    Willner I; Willner B; Katz E
    Bioelectrochemistry; 2007 Jan; 70(1):2-11. PubMed ID: 16750941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis.
    Mavré F; Bontemps M; Ammar-Merah S; Marchal D; Limoges B
    Anal Chem; 2007 Jan; 79(1):187-94. PubMed ID: 17194138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation ordering of nanoparticle Ag/Co cores controlled by electric and magnetic fields.
    Gmucová K; Weis M; Nádazdy V; Majková E
    Chemphyschem; 2008 May; 9(7):1036-9. PubMed ID: 18386264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces.
    Xu L; Han G; Hu J; He Y; Pan J; Li Y; Xiang J
    Phys Chem Chem Phys; 2009 Aug; 11(30):6490-7. PubMed ID: 19809681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.