These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 16460083)
21. Self-assembled silver nanochains for surface-enhanced Raman scattering. Yang Y; Shi J; Tanaka T; Nogami M Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408 [TBL] [Abstract][Full Text] [Related]
22. In situ fabricated polymer-silver nanocomposite thin film as an inexpensive and efficient substrate for surface-enhanced Raman scattering. Hariprasad E; Radhakrishnan TP Langmuir; 2013 Oct; 29(42):13050-7. PubMed ID: 24106915 [TBL] [Abstract][Full Text] [Related]
23. Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Cañamares MV; Garcia-Ramos JV; Gómez-Varga JD; Domingo C; Sanchez-Cortes S Langmuir; 2005 Aug; 21(18):8546-53. PubMed ID: 16114970 [TBL] [Abstract][Full Text] [Related]
24. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. D'Andrea C; Neri F; Ossi PM; Santo N; Trusso S Nanotechnology; 2009 Jun; 20(24):245606. PubMed ID: 19471080 [TBL] [Abstract][Full Text] [Related]
25. Fabrication, characterization, and application in surface-enhanced Raman spectrum of assembled type-I collagen-silver nanoparticle multilayered films. Sun Y; Wang L; Sun L; Guo C; Yang T; Liu Z; Xu F; Li Z J Chem Phys; 2008 Feb; 128(7):074704. PubMed ID: 18298161 [TBL] [Abstract][Full Text] [Related]
28. Normal and surface-enhanced Raman spectroscopy of nitroazobenzene submonolayers and multilayers on carbon and silver surfaces. Liang H; Tian H; McCreery RL Appl Spectrosc; 2007 Jun; 61(6):613-20. PubMed ID: 17650372 [TBL] [Abstract][Full Text] [Related]
29. Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy. Shoute LC; Bergren AJ; Mahmoud AM; Harris KD; McCreery RL Appl Spectrosc; 2009 Feb; 63(2):133-40. PubMed ID: 19215642 [TBL] [Abstract][Full Text] [Related]
30. Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates. Biswas A; Bayer IS; Dahanayaka DH; Bumm LA; Li Z; Watanabe F; Sharma R; Xu Y; Biris AS; Norton MG; Suhir E Nanotechnology; 2009 Aug; 20(32):325705. PubMed ID: 19620750 [TBL] [Abstract][Full Text] [Related]
31. Surface-enhanced Raman scattering: a powerful tool for chemical identification. Kim K; Shin KS Anal Sci; 2011; 27(8):775-83. PubMed ID: 21828913 [TBL] [Abstract][Full Text] [Related]
32. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates. Rao VK; Radhakrishnan TP ACS Appl Mater Interfaces; 2015 Jun; 7(23):12767-73. PubMed ID: 26035249 [TBL] [Abstract][Full Text] [Related]
33. New strategy for ready application of surface-enhanced resonance Raman scattering/surface-enhanced Raman scattering to chemical analysis of organic films on dielectric substrates. Kim K; Kim NH; Park HK; Ha YS; Han HS Appl Spectrosc; 2005 Oct; 59(10):1217-21. PubMed ID: 18028618 [TBL] [Abstract][Full Text] [Related]
34. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate. Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640 [TBL] [Abstract][Full Text] [Related]