BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 16460112)

  • 1. Assembly of metal nanoparticle-carbon nanotube composite materials at the liquid/liquid interface.
    Lee KY; Kim M; Hahn J; Suh JS; Lee I; Kim K; Han SW
    Langmuir; 2006 Feb; 22(4):1817-21. PubMed ID: 16460112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general route to prepare one- and three-dimensional carbon nanotube/metal nanoparticle composite nanostructures.
    Hu X; Wang T; Wang L; Guo S; Dong S
    Langmuir; 2007 May; 23(11):6352-7. PubMed ID: 17408292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Ag nanoparticle-doped foam-like polymer films at the liquid-liquid interface.
    Lin L; Shang K; Xu X; Chu C; Ma H; Lee YI; Hao J; Liu HG
    J Phys Chem B; 2011 Sep; 115(38):11113-8. PubMed ID: 21863863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials.
    Rao CN; Kalyanikutty KP
    Acc Chem Res; 2008 Apr; 41(4):489-99. PubMed ID: 18333620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.
    Palgrave RG; Parkin IP
    J Am Chem Soc; 2006 Feb; 128(5):1587-97. PubMed ID: 16448130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid fabrication of large-area nanoparticle monolayer films via water-induced interfacial assembly.
    Liu C; Li YJ; Wang MH; He Y; Yeung ES
    Nanotechnology; 2009 Feb; 20(6):065604. PubMed ID: 19417392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Film formation of Ag nanoparticles at the organic-aqueous liquid interface.
    Sakata JK; Dwoskin AD; Vigorita JL; Spain EM
    J Phys Chem B; 2005 Jan; 109(1):138-41. PubMed ID: 16850996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes.
    Lin Y; Watson KA; Fallbach MJ; Ghose S; Smith JG; Delozier DM; Cao W; Crooks RE; Connell JW
    ACS Nano; 2009 Apr; 3(4):871-84. PubMed ID: 19278218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle mediated formation of aligned nanotube composite films.
    Cui J; Daghlian CP; Gibson UJ
    J Phys Chem B; 2005 Jun; 109(23):11456-60. PubMed ID: 16852402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of thin films comprising palladium nanoparticles by a solid-liquid interface reaction technique.
    Patil KR; Hwang YK; Kim MJ; Chang JS; Park SE
    J Colloid Interface Sci; 2004 Aug; 276(2):333-8. PubMed ID: 15271560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-dimensional carbon nanotube/SnO2/noble metal nanoparticle hybrid nanostructure: synthesis, characterization, and electrochemical sensing.
    Fang Y; Guo S; Zhu C; Dong S; Wang E
    Chem Asian J; 2010 Aug; 5(8):1838-45. PubMed ID: 20583039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating gold nanoparticle-oxide nanotube composite materials by a self-assembly method.
    Xu JZ; Zhao WB; Zhu JJ; Li GX; Chen HY
    J Colloid Interface Sci; 2005 Oct; 290(2):450-4. PubMed ID: 15964008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of metal nanoparticle monolayers on amphiphilic poly(amido amine) dendrimer Langmuir films.
    Ujihara M; Mitamura K; Torikai N; Imae T
    Langmuir; 2006 Apr; 22(8):3656-61. PubMed ID: 16584240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate.
    Chen X; He J; Yan C; Tang H
    J Phys Chem B; 2006 Nov; 110(43):21684-9. PubMed ID: 17064126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of diamond-coated CNTs and their reinforcement in Nylon-6 single fiber.
    Rangari VK; Mohammad GM; Jeelani S; Butenko YV; Dhanak VR
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1829-34. PubMed ID: 20557122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets.
    Pumera M
    Langmuir; 2007 May; 23(11):6453-8. PubMed ID: 17455966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube surface modification with polyelectrolyte brushes endowed with quantum dots and metal oxide nanoparticles through in situ synthesis.
    Llarena I; Romero G; Ziolo RF; Moya SE
    Nanotechnology; 2010 Feb; 21(5):055605. PubMed ID: 20032551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.
    Moon YK; Lee J; Lee JK; Kim TK; Kim SH
    Langmuir; 2009 Feb; 25(3):1739-43. PubMed ID: 19132930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles.
    Kim YH; Lee DK; Cha HG; Kim CW; Kang YC; Kang YS
    J Phys Chem B; 2006 Dec; 110(49):24923-8. PubMed ID: 17149913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.