These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Pavlovskaya GE; Cleveland ZI; Stupic KF; Basaraba RJ; Meersmann T Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18275-9. PubMed ID: 16344474 [TBL] [Abstract][Full Text] [Related]
9. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Rogers NJ; Hill-Casey F; Stupic KF; Six JS; Lesbats C; Rigby SP; Fraissard J; Pavlovskaya GE; Meersmann T Proc Natl Acad Sci U S A; 2016 Mar; 113(12):3164-8. PubMed ID: 26961001 [TBL] [Abstract][Full Text] [Related]
10. Pulmonary MRI contrast using Surface Quadrupolar Relaxation (SQUARE) of hyperpolarized (83)Kr. Six JS; Hughes-Riley T; Lilburn DM; Dorkes AC; Stupic KF; Shaw DE; Morris PG; Hall IP; Pavlovskaya GE; Meersmann T Magn Reson Imaging; 2014 Jan; 32(1):48-53. PubMed ID: 24144493 [TBL] [Abstract][Full Text] [Related]
11. Signal dynamics in magnetic resonance imaging of the lung with hyperpolarized noble gases. Möller HE; Chen XJ; Chawla MS; Driehuys B; Hedlund LW; Johnson GA J Magn Reson; 1998 Nov; 135(1):133-43. PubMed ID: 9799687 [TBL] [Abstract][Full Text] [Related]
12. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications. Hughes-Riley T; Six JS; Lilburn DML; Stupic KF; Dorkes AC; Shaw DE; Pavlovskaya GE; Meersmann T J Magn Reson; 2013 Dec; 237():23-33. PubMed ID: 24135800 [TBL] [Abstract][Full Text] [Related]
13. (83)Kr nuclear magnetic moment in terms of that of (3)He. Makulski W Magn Reson Chem; 2014 Aug; 52(8):430-4. PubMed ID: 24842240 [TBL] [Abstract][Full Text] [Related]
15. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129. Six JS; Hughes-Riley T; Stupic KF; Pavlovskaya GE; Meersmann T PLoS One; 2012; 7(11):e49927. PubMed ID: 23209620 [TBL] [Abstract][Full Text] [Related]
16. High resolution NMR study of T1 magnetic relaxation dispersion. I. Theoretical considerations of relaxation of scalar coupled spins at arbitrary magnetic field. Ivanov K; Yurkovskaya A; Vieth HM J Chem Phys; 2008 Dec; 129(23):234513. PubMed ID: 19102544 [TBL] [Abstract][Full Text] [Related]
17. Molecular exchange dynamics in partially filled microscale and nanoscale pores of silica glasses studied by field-cycling nuclear magnetic resonance relaxometry. Mattea C; Kimmich R; Ardelean I; Wonorahardjo S; Farrher G J Chem Phys; 2004 Dec; 121(21):10648-56. PubMed ID: 15549948 [TBL] [Abstract][Full Text] [Related]
18. Hyperpolarized cesium ions doped in a glass material. Ishikawa K J Magn Reson; 2014 Dec; 249():94-99. PubMed ID: 25462952 [TBL] [Abstract][Full Text] [Related]
19. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation. Stupic KF; Elkins ND; Pavlovskaya GE; Repine JE; Meersmann T Phys Med Biol; 2011 Jul; 56(13):3731-48. PubMed ID: 21628780 [TBL] [Abstract][Full Text] [Related]
20. Substrate and field dependence of the SPINOE transfer to surface 13C from hyperpolarized 129Xe. Knagge K; Smith LJ; Raftery D J Phys Chem B; 2005 Mar; 109(10):4533-8. PubMed ID: 16851529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]