These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16460198)

  • 1. The importance of hydrogen's potential-energy surface and the strength of the forming R-H bond in surface hydrogenation reactions.
    Crawford P; Hu P
    J Chem Phys; 2006 Jan; 124(4):044705. PubMed ID: 16460198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of the 4d transition metals toward N hydrogenation and NH dissociation: a DFT-based HSAB analysis.
    Crawford P; Hu P
    J Phys Chem B; 2006 Mar; 110(9):4157-61. PubMed ID: 16509709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of electronegativity differences and surface structure in molecular dissociation reactions at transition metal surfaces.
    Crawford P; Hu P
    J Phys Chem B; 2006 Dec; 110(49):24929-35. PubMed ID: 17149914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the adsorption competition and the relationship between dissociation and association reactions in ammonia synthesis.
    Song T; Hu P
    J Chem Phys; 2007 Dec; 127(23):234706. PubMed ID: 18154408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces.
    Liu ZP; Hu P
    J Am Chem Soc; 2003 Feb; 125(7):1958-67. PubMed ID: 12580623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary structure sensitive and insensitive catalytic relationships.
    Van Santen RA
    Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trends in C-O and C-N bond formations over transition metal surfaces: an insight into kinetic sensitivity in catalytic reactions.
    Crawford P; Hu P
    J Chem Phys; 2007 May; 126(19):194706. PubMed ID: 17523827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the involvement of 5f orbitals in the bonding and reactivity of organometallic actinide compounds: thorium(IV) and uranium(IV) bis(hydrazonato) complexes.
    Cantat T; Graves CR; Jantunen KC; Burns CJ; Scott BL; Schelter EJ; Morris DE; Hay PJ; Kiplinger JL
    J Am Chem Soc; 2008 Dec; 130(51):17537-51. PubMed ID: 19053455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of tunneling in the first hydrogenation step in ammonia synthesis over a Ru(0001) surface.
    Tautermann CS; Clary DC
    J Chem Phys; 2005 Apr; 122(13):134702. PubMed ID: 15847484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A density functional theory study of sulfur poisoning.
    McAllister B; Hu P
    J Chem Phys; 2005 Feb; 122(8):84709. PubMed ID: 15836079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition state for alkyl group hydrogenation on Pt(111).
    Ye P; Gellman AJ
    J Am Chem Soc; 2008 Jul; 130(26):8518-26. PubMed ID: 18528986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixtures.
    Sheth PA; Neurock M; Smith CM
    J Phys Chem B; 2005 Jun; 109(25):12449-66. PubMed ID: 16852540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of CCl(4) adsorption and hydrogenation on a Pt (111) surface.
    Lu G; Lan J; Li C; Wang W; Wang C
    J Phys Chem B; 2006 Dec; 110(48):24541-8. PubMed ID: 17134213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of atoms on cu surfaces: a density functional theory study.
    Pang XY; Xue LQ; Wang GC
    Langmuir; 2007 Apr; 23(9):4910-7. PubMed ID: 17388612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces.
    Munter TR; Bligaard T; Christensen CH; Nørskov JK
    Phys Chem Chem Phys; 2008 Sep; 10(34):5202-6. PubMed ID: 18728861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear M[triple bond]E-Me versus bent M-E-Me: bonding analysis in heavier metal-ylidyne complexes [(Cp)(CO)2M[triple bond]EMe] and metallo-ylidenes [(Cp)(CO)3M-EMe] (M = Cr, Mo, W; E = Si, Ge, Sn, Pb).
    Pandey KK; Lledós A
    Inorg Chem; 2009 Apr; 48(7):2748-59. PubMed ID: 19256519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigations on the formation and dehydrogenation reaction pathways of H(NH2BH2)(n)H (n = 1-4) oligomers: importance of dihydrogen interactions.
    Li J; Kathmann SM; Hu HS; Schenter GK; Autrey T; Gutowski M
    Inorg Chem; 2010 Sep; 49(17):7710-20. PubMed ID: 20701247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slab model studies of water adsorption and decomposition on clean and X- (X = C, N and O) contaminated Pd(111) surfaces.
    Cao Y; Chen ZX
    Phys Chem Chem Phys; 2007 Feb; 9(6):739-46. PubMed ID: 17268686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical bonding in phosphane and amine complexes of main group elements and transition metals.
    Bessac F; Frenking G
    Inorg Chem; 2006 Aug; 45(17):6956-64. PubMed ID: 16903755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.