These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 16460310)
1. Simplified modelling of metabolic pathways for flux prediction and optimization: lessons from an in vitro reconstruction of the upper part of glycolysis. Fiévet JB; Dillmann C; Curien G; de Vienne D Biochem J; 2006 Jun; 396(2):317-26. PubMed ID: 16460310 [TBL] [Abstract][Full Text] [Related]
2. Flux prediction using artificial neural network (ANN) for the upper part of glycolysis. Ajjolli Nagaraja A; Fontaine N; Delsaut M; Charton P; Damour C; Offmann B; Grondin-Perez B; Cadet F PLoS One; 2019; 14(5):e0216178. PubMed ID: 31067238 [TBL] [Abstract][Full Text] [Related]
3. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems. Stephani A; Heinrich R Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953 [TBL] [Abstract][Full Text] [Related]
4. [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments]. Schauer M; Heinrich R; Rapoport SM Acta Biol Med Ger; 1981; 40(12):1659-82. PubMed ID: 6285649 [TBL] [Abstract][Full Text] [Related]
5. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters. Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363 [TBL] [Abstract][Full Text] [Related]
7. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells. Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431 [TBL] [Abstract][Full Text] [Related]
8. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. Famili I; Mahadevan R; Palsson BO Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710 [TBL] [Abstract][Full Text] [Related]
9. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. Smallbone K; Messiha HL; Carroll KM; Winder CL; Malys N; Dunn WB; Murabito E; Swainston N; Dada JO; Khan F; Pir P; Simeonidis E; Spasić I; Wishart J; Weichart D; Hayes NW; Jameson D; Broomhead DS; Oliver SG; Gaskell SJ; McCarthy JE; Paton NW; Westerhoff HV; Kell DB; Mendes P FEBS Lett; 2013 Sep; 587(17):2832-41. PubMed ID: 23831062 [TBL] [Abstract][Full Text] [Related]
10. Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models. Baker SM; Schallau K; Junker BH J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375457 [TBL] [Abstract][Full Text] [Related]
11. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM). Song HS; Ramkrishna D Biotechnol Bioeng; 2010 Jun; 106(2):271-84. PubMed ID: 20148411 [TBL] [Abstract][Full Text] [Related]
12. Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws--a promising method for speeding up the kinetic modelling of complex metabolic networks. Bulik S; Grimbs S; Huthmacher C; Selbig J; Holzhütter HG FEBS J; 2009 Jan; 276(2):410-24. PubMed ID: 19137631 [TBL] [Abstract][Full Text] [Related]
13. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum. Penkler G; du Toit F; Adams W; Rautenbach M; Palm DC; van Niekerk DD; Snoep JL FEBS J; 2015 Apr; 282(8):1481-511. PubMed ID: 25693925 [TBL] [Abstract][Full Text] [Related]
14. Mathematical modeling of isotope labeling experiments for metabolic flux analysis. Nargund S; Sriram G Methods Mol Biol; 2014; 1083():109-31. PubMed ID: 24218213 [TBL] [Abstract][Full Text] [Related]
15. Resource allocation in metabolic networks: kinetic optimization and approximations by FBA. Müller S; Regensburger G; Steuer R Biochem Soc Trans; 2015 Dec; 43(6):1195-200. PubMed ID: 26614660 [TBL] [Abstract][Full Text] [Related]
16. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization. Noor E; Flamholz A; Bar-Even A; Davidi D; Milo R; Liebermeister W PLoS Comput Biol; 2016 Nov; 12(11):e1005167. PubMed ID: 27812109 [TBL] [Abstract][Full Text] [Related]
18. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Holzhütter HG Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787 [TBL] [Abstract][Full Text] [Related]
19. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles. Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Ebenhöh O; Heinrich R Bull Math Biol; 2001 Jan; 63(1):21-55. PubMed ID: 11146883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]