These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Mekhfi H; Veksler V; Mateo P; Maupoil V; Rochette L; Ventura-Clapier R Circ Res; 1996 Jun; 78(6):1016-27. PubMed ID: 8635232 [TBL] [Abstract][Full Text] [Related]
7. Stunned myocardium and oxygen free radicals--sarcolemmal membrane damage due to oxygen free radicals. Kaneko M; Hayashi H; Kobayashi A; Yamazaki N; Dhalla NS Jpn Circ J; 1991 Sep; 55(9):885-92. PubMed ID: 1834872 [TBL] [Abstract][Full Text] [Related]
8. Alterations in heart sarcolemmal Ca2(+)-ATPase and Ca2(+)-binding activities due to oxygen free radicals. Kaneko M; Singal PK; Dhalla NS Basic Res Cardiol; 1990; 85(1):45-54. PubMed ID: 2158297 [TBL] [Abstract][Full Text] [Related]
9. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. Volterra A; Trotti D; Tromba C; Floridi S; Racagni G J Neurosci; 1994 May; 14(5 Pt 1):2924-32. PubMed ID: 7910203 [TBL] [Abstract][Full Text] [Related]
10. Decrease in heart mitochondrial creatine kinase activity due to oxygen free radicals. Yuan G; Kaneko M; Masuda H; Hon RB; Kobayashi A; Yamazaki N Biochim Biophys Acta; 1992 Nov; 1140(1):78-84. PubMed ID: 1329980 [TBL] [Abstract][Full Text] [Related]
11. The effect of ryanodine on oxygen free radical-induced dysfunction of cardiac sarcoplasmic reticulum. Okabe E; Kuse K; Sekishita T; Suyama N; Tanaka K; Ito H J Pharmacol Exp Ther; 1991 Mar; 256(3):868-75. PubMed ID: 1848630 [TBL] [Abstract][Full Text] [Related]
12. Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. Kaneko M; Beamish RE; Dhalla NS Am J Physiol; 1989 Feb; 256(2 Pt 2):H368-74. PubMed ID: 2537032 [TBL] [Abstract][Full Text] [Related]
13. Mechanism for depression of heart sarcolemmal Ca2+ pump by oxygen free radicals. Kaneko M; Elimban V; Dhalla NS Am J Physiol; 1989 Sep; 257(3 Pt 2):H804-11. PubMed ID: 2551190 [TBL] [Abstract][Full Text] [Related]
14. Possible mechanism responsible for mechanical dysfunction of ischemic myocardium: a role of oxygen free radicals. Okabe E; Fujimaki R; Murayama M; Ito H Jpn Circ J; 1989 Sep; 53(9):1132-7. PubMed ID: 2557460 [TBL] [Abstract][Full Text] [Related]
15. Impairment of cardiac contractility and sarcoplasmic reticulum Ca2+ ATPase activity by hypochlorous acid: reversal by dithiothreitol. Eley DW; Eley JM; Korecky B; Fliss H Can J Physiol Pharmacol; 1991 Nov; 69(11):1677-85. PubMed ID: 1666535 [TBL] [Abstract][Full Text] [Related]
16. Effects of oxygen radicals on substrate oxidation by cardiac myocytes. McDonough KH; Henry JJ; Spitzer JJ Biochim Biophys Acta; 1987 Nov; 926(2):127-31. PubMed ID: 2822138 [TBL] [Abstract][Full Text] [Related]
17. Calmodulin and free oxygen radicals interaction with steady-state calcium accumulation and passive calcium permeability of cardiac sarcoplasmic reticulum. Okabe E; Sugihara M; Tanaka K; Sasaki H; Ito H J Pharmacol Exp Ther; 1989 Jul; 250(1):286-92. PubMed ID: 2526216 [TBL] [Abstract][Full Text] [Related]
18. Hyperoxia and xanthine dehydrogenase/oxidase activities in rat lung and heart. Elsayed NM; Tierney DF Arch Biochem Biophys; 1989 Sep; 273(2):281-6. PubMed ID: 2549869 [TBL] [Abstract][Full Text] [Related]
19. Role of oxidative stress in ischemia-reperfusion-induced alterations in myofibrillar ATPase activities and gene expression in the heart. Maddika S; Elimban V; Chapman D; Dhalla NS Can J Physiol Pharmacol; 2009 Feb; 87(2):120-9. PubMed ID: 19234575 [TBL] [Abstract][Full Text] [Related]
20. Oxidant stress increases heat shock protein 70 mRNA in isolated perfused rat heart. Kukreja RC; Kontos MC; Loesser KE; Batra SK; Qian YZ; Gbur CJ; Naseem SA; Jesse RL; Hess ML Am J Physiol; 1994 Dec; 267(6 Pt 2):H2213-9. PubMed ID: 7810720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]