These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 164605)

  • 1. Separation of sphingosine bases by chromatography on columns of silica gel.
    Barenholz Y; Gatt S
    Methods Enzymol; 1975; 35():529-33. PubMed ID: 164605
    [No Abstract]   [Full Text] [Related]  

  • 2. Purification of free sphingoid bases by solid-phase extraction on weak cation exchanger cartridges.
    Bodennec J; Famy C; Brichon G; Zwingelstein G; Portoukalian J
    Anal Biochem; 2000 Mar; 279(2):245-8. PubMed ID: 10706795
    [No Abstract]   [Full Text] [Related]  

  • 3. Separation of sphingosine, dihydrosphingosine and phytosphingosine by chromatography on columns of silica gel.
    Barenholz Y; Gatt S
    Biochim Biophys Acta; 1968 Jul; 152(4):790-3. PubMed ID: 4298232
    [No Abstract]   [Full Text] [Related]  

  • 4. SEPARATION OF LONG-CHAIN BASES BY THIN-LAYER CHROMATOGRAPHY; INSTABILITY OF SPHINGOSINE.
    WEISS B; STILLER RL
    J Lipid Res; 1965 Jan; 6():159-62. PubMed ID: 14280465
    [No Abstract]   [Full Text] [Related]  

  • 5. Detection of D-erythro and L-threo sphingosine bases in preparative sphingosylphosphorylcholine and its N-acylated derivatives and some evidence of their different chemical configurations.
    Hara A; Taketomi T
    J Biochem; 1983 Nov; 94(5):1715-8. PubMed ID: 6654881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The separation and direct detection of ceramides and sphingoid bases by normal-phase high-performance liquid chromatography and evaporative light-scattering detection.
    McNabb TJ; Cremesti AE; Brown PR; Fischl AS
    Anal Biochem; 1999 Dec; 276(2):242-50. PubMed ID: 10603247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of endogenous free sphingoid bases in cells induced by changing medium conditions.
    Lavie Y; Blusztajn JK; Liscovitch M
    Biochim Biophys Acta; 1994 Feb; 1220(3):323-8. PubMed ID: 8305506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unilamellar liposomes covalently coupled on silica gel for liquid chromatography.
    Mao X; Kong L; Li X; Guo B; Zou H
    Anal Bioanal Chem; 2003 Feb; 375(4):550-5. PubMed ID: 12610709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of macroporous vinyl silica and silica monolithic columns in high pressure gas chromatography.
    Maniquet A; Bruyer N; Raffin G; Baco-Antionali F; Demesmay C; Dugas V; Randon J
    J Chromatogr A; 2017 Jun; 1504():105-111. PubMed ID: 28495079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversed-phase HPLC separation of proteins on chemically bonded silica gel columns.
    Nimura N; Itoh H
    Mol Biotechnol; 1996 Feb; 5(1):11-6. PubMed ID: 8853012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitation of free sphingosine in liver by high-performance liquid chromatography.
    Merrill AH; Wang E; Mullins RE; Jamison WC; Nimkar S; Liotta DC
    Anal Biochem; 1988 Jun; 171(2):373-81. PubMed ID: 3407935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical properties and stereoisomerism of heterogeneous long chain bases in lysosphingolipids by positive ion fast atom bombardment mass spectrometry and carbon-13 NMR spectroscopy.
    Hara A; Taketomi T
    J Biochem; 1986 Aug; 100(2):415-23. PubMed ID: 3782058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of silica-based stationary phases for high-performance liquid chromatography.
    Qiu H; Liang X; Sun M; Jiang S
    Anal Bioanal Chem; 2011 Apr; 399(10):3307-22. PubMed ID: 21221544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dry column chromatography of phospholipids.
    MacDonald RC; Rempas SP
    J Chromatogr; 1977 Jan; 131():157-68. PubMed ID: 192744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance affinity chromatography of oligonucleotides on nucleic acid analogue immobilized silica gel columns.
    Yashima E; Shiiba T; Sawa T; Miyauchi N; Akashi M
    J Chromatogr; 1992 Jun; 603(1-2):111-9. PubMed ID: 1322922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of hydrophobic metabolites using monolithic silica column in high-performance liquid chromatography and supercritical fluid chromatography.
    Bamba T; Fukusaki E
    J Sep Sci; 2009 Aug; 32(15-16):2699-706. PubMed ID: 19606440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of diphosphoinositide and triphosphoinositide on oxalate-impregnated silica gel columns.
    Cooper PH; Hawthorne JN
    J Chromatogr; 1973 Dec; 87(1):267-8. PubMed ID: 4359061
    [No Abstract]   [Full Text] [Related]  

  • 18. Preparative scale isolation of sphingosine.
    Radin NS
    J Lipid Res; 1990 Dec; 31(12):2291-3. PubMed ID: 2090723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption chromatography of cyclic nucleotides on silica gel and alumina thin-layer sheets.
    Flouret G; Hechter O
    Anal Biochem; 1974 Mar; 58(1):276-85. PubMed ID: 4363438
    [No Abstract]   [Full Text] [Related]  

  • 20. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns.
    Miyamoto K; Hara T; Kobayashi H; Morisaka H; Tokuda D; Horie K; Koduki K; Makino S; Núñez O; Yang C; Kawabe T; Ikegami T; Takubo H; Ishihama Y; Tanaka N
    Anal Chem; 2008 Nov; 80(22):8741-50. PubMed ID: 18947204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.