BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16460509)

  • 21. Chiral and non-chiral nutations in Arabidopsis roots grown on the random positioning machine.
    Piconese S; Tronelli G; Pippia P; Migliaccio F
    J Exp Bot; 2003 Aug; 54(389):1909-18. PubMed ID: 12869523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.
    Yokoyama A; Yamashino T; Amano Y; Tajima Y; Imamura A; Sakakibara H; Mizuno T
    Plant Cell Physiol; 2007 Jan; 48(1):84-96. PubMed ID: 17132632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis.
    Alonso-Peral MM; Candela H; del Pozo JC; Martínez-Laborda A; Ponce MR; Micol JL
    Development; 2006 Oct; 133(19):3755-66. PubMed ID: 16943276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism.
    Abas L; Benjamins R; Malenica N; Paciorek T; Wiśniewska J; Moulinier-Anzola JC; Sieberer T; Friml J; Luschnig C
    Nat Cell Biol; 2006 Mar; 8(3):249-56. PubMed ID: 16489343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NPY genes play an essential role in root gravitropic responses in Arabidopsis.
    Li Y; Dai X; Cheng Y; Zhao Y
    Mol Plant; 2011 Jan; 4(1):171-9. PubMed ID: 20833732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of amyloplasts and water deficit in root tropisms.
    Ponce G; Rasgado FA; Cassab GI
    Plant Cell Environ; 2008 Feb; 31(2):205-17. PubMed ID: 18047572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The right-handed slanting of Arabidopsis thaliana roots is due to the combined effects of positive gravitropism, circumnutation and thigmotropism.
    Migliaccio F; Piconese S; Tronelli G
    J Gravit Physiol; 2000 Dec; 7(3):1-6. PubMed ID: 12124179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation.
    Lucas M; Godin C; Jay-Allemand C; Laplaze L
    J Exp Bot; 2008; 59(1):55-66. PubMed ID: 17720688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport.
    Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S
    J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in beta-oxidation.
    Adham AR; Zolman BK; Millius A; Bartel B
    Plant J; 2005 Mar; 41(6):859-74. PubMed ID: 15743450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth.
    Mouchel CF; Osmont KS; Hardtke CS
    Nature; 2006 Sep; 443(7110):458-61. PubMed ID: 17006513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy.
    Nakashima K; Fujita Y; Kanamori N; Katagiri T; Umezawa T; Kidokoro S; Maruyama K; Yoshida T; Ishiyama K; Kobayashi M; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell Physiol; 2009 Jul; 50(7):1345-63. PubMed ID: 19541597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium.
    Sohlberg JJ; Myrenås M; Kuusk S; Lagercrantz U; Kowalczyk M; Sandberg G; Sundberg E
    Plant J; 2006 Jul; 47(1):112-23. PubMed ID: 16740145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis.
    Sato A; Yamamoto KT
    Physiol Plant; 2008 Jun; 133(2):397-405. PubMed ID: 18298415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport.
    Morita Y; Kyozuka J
    Plant Cell Physiol; 2007 Mar; 48(3):540-9. PubMed ID: 17303594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family.
    Liu S; Wang J; Wang L; Wang X; Xue Y; Wu P; Shou H
    Cell Res; 2009 Sep; 19(9):1110-9. PubMed ID: 19546891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Elaborate vesicle transport system behind the formation of plant cell polarity: focusing on the auxin mediated plant development].
    Naramoto S
    Tanpakushitsu Kakusan Koso; 2008 Dec; 53(16 Suppl):2320-5. PubMed ID: 21038629
    [No Abstract]   [Full Text] [Related]  

  • 38. WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5.
    Willige BC; Ogiso-Tanaka E; Zourelidou M; Schwechheimer C
    Development; 2012 Nov; 139(21):4020-8. PubMed ID: 22992959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of HLS1 in sugar and auxin signaling in Arabidopsis leaves.
    Ohto MA; Hayashi S; Sawa S; Hashimoto-Ohta A; Nakamura K
    Plant Cell Physiol; 2006 Dec; 47(12):1603-11. PubMed ID: 17071622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the gravitropic signal transduction pathway through the analysis of new Arabidopsis mutants.
    Migliaccio F; Ferrari S; Piconese S
    J Gravit Physiol; 1998 Jul; 5(1):P141-2. PubMed ID: 11542327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.