These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16460742)

  • 21. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column.
    Nelson DM; Marcus RK
    Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elution strategies for reversed-phase high-performance liquid chromatography analysis of sucrose alkanoate regioisomers with charged aerosol detection.
    Lie A; Pedersen LH
    J Chromatogr A; 2013 Oct; 1311():127-33. PubMed ID: 24011419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental band compression factor of a neutral compound under high pressure gradient elution.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Dec; 1215(1-2):64-73. PubMed ID: 19027118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pressurized CEC with gradient elution for separation of flavonoids from corn.
    Wang S; Jia L; Chen D
    J Sep Sci; 2009 Feb; 32(3):388-93. PubMed ID: 19142907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multilinear gradient elution optimisation in reversed-phase liquid chromatography using genetic algorithms.
    Nikitas P; Pappa-Louisi A; Agrafiotou P
    J Chromatogr A; 2006 Jul; 1120(1-2):299-307. PubMed ID: 16426624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrophilic interaction chromatography of nucleoside triphosphates with temperature as a separation parameter.
    Johnsen E; Wilson SR; Odsbu I; Krapp A; Malerod H; Skarstad K; Lundanes E
    J Chromatogr A; 2011 Sep; 1218(35):5981-6. PubMed ID: 21315360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution chromatography of proteins in short columns and adsorptive membranes.
    Coffman JL; Roper DK; Lightfoot EN
    Bioseparation; 1994 Jun; 4(3):183-200. PubMed ID: 7765180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How to generate peak capacity in column liquid chromatography. The Halász nomograms revised.
    Meyer VR
    J Chromatogr A; 2008 Apr; 1187(1-2):138-44. PubMed ID: 18302961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution.
    Werres T; Schmidt TC; Teutenberg T
    J Chromatogr A; 2021 Mar; 1641():461965. PubMed ID: 33611125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH gradient reversed-phase liquid chromatography as a fractionation tool for the separation of peptides.
    Baczek T; Walijewski Ł; Kaliszan R
    Talanta; 2008 Mar; 75(1):76-82. PubMed ID: 18371850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution.
    Jin CH; Lee JW; Row KH
    J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography.
    Horie K; Ikegami T; Hosoya K; Saad N; Fiehn O; Tanaka N
    J Chromatogr A; 2007 Sep; 1164(1-2):198-205. PubMed ID: 17689542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exact peak compression factor in linear gradient elution. I. Theory.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implementations of two-dimensional liquid chromatography.
    Guiochon G; Marchetti N; Mriziq K; Shalliker RA
    J Chromatogr A; 2008 May; 1189(1-2):109-68. PubMed ID: 18336826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reequilibration time of superficially porous silica based columns in gradient elution reversed phase liquid chromatography.
    VanMiddlesworth BJ; Dorsey JG
    J Chromatogr A; 2011 Oct; 1218(40):7158-65. PubMed ID: 21893317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography.
    Stoll DR; Cohen JD; Carr PW
    J Chromatogr A; 2006 Jul; 1122(1-2):123-37. PubMed ID: 16720027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maximizing peak capacity and separation speed in liquid chromatography.
    Petersson P; Frank A; Heaton J; Euerby MR
    J Sep Sci; 2008 Jul; 31(13):2346-57. PubMed ID: 18646261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gradient elution in micellar liquid chromatography. I. Micelle concentration gradient.
    Madamba-Tan LS; Strasters JK; Khaledi MG
    J Chromatogr A; 1994 Oct; 683(2):321-34. PubMed ID: 7981837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast gradient elution reversed-phase high-performance liquid chromatography with diode-array detection as a high-throughput screening method for drugs of abuse. I. Chromatographic conditions.
    Stoll DR; Paek C; Carr PW
    J Chromatogr A; 2006 Dec; 1137(2):153-62. PubMed ID: 17078962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.