These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold. González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812 [TBL] [Abstract][Full Text] [Related]
4. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910 [TBL] [Abstract][Full Text] [Related]
5. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem. Pernot L; Frénois F; Rybkine T; L'Hermite G; Petrella S; Delettré J; Jarlier V; Collatz E; Sougakoff W J Mol Biol; 2001 Jul; 310(4):859-74. PubMed ID: 11453693 [TBL] [Abstract][Full Text] [Related]
6. Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution. Yamaguchi Y; Takashio N; Wachino J; Yamagata Y; Arakawa Y; Matsuda K; Kurosaki H J Biochem; 2010 Jun; 147(6):905-15. PubMed ID: 20305272 [TBL] [Abstract][Full Text] [Related]
7. Structural and computational investigations of VIM-7: insights into the substrate specificity of vim metallo-β-lactamases. Borra PS; Leiros HK; Ahmad R; Spencer J; Leiros I; Walsh TR; Sundsfjord A; Samuelsen O J Mol Biol; 2011 Aug; 411(1):174-89. PubMed ID: 21645522 [TBL] [Abstract][Full Text] [Related]
9. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. Ullah JH; Walsh TR; Taylor IA; Emery DC; Verma CS; Gamblin SJ; Spencer J J Mol Biol; 1998 Nov; 284(1):125-36. PubMed ID: 9811546 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis. Concha NO; Rasmussen BA; Bush K; Herzberg O Protein Sci; 1997 Dec; 6(12):2671-6. PubMed ID: 9416622 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of Serratia fonticola Sfh-I: activation of the nucleophile in mono-zinc metallo-β-lactamases. Fonseca F; Bromley EH; Saavedra MJ; Correia A; Spencer J J Mol Biol; 2011 Sep; 411(5):951-9. PubMed ID: 21762699 [TBL] [Abstract][Full Text] [Related]
12. Metal content and localization during turnover in B. cereus metallo-beta-lactamase. Llarrull LI; Tioni MF; Vila AJ J Am Chem Soc; 2008 Nov; 130(47):15842-51. PubMed ID: 18980306 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for the role of Asp-120 in metallo-beta-lactamases. Crisp J; Conners R; Garrity JD; Carenbauer AL; Crowder MW; Spencer J Biochemistry; 2007 Sep; 46(37):10664-74. PubMed ID: 17715946 [TBL] [Abstract][Full Text] [Related]
14. Host-specific enzyme-substrate interactions in SPM-1 metallo-β-lactamase are modulated by second sphere residues. González LJ; Moreno DM; Bonomo RA; Vila AJ PLoS Pathog; 2014 Jan; 10(1):e1003817. PubMed ID: 24391494 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Concha NO; Janson CA; Rowling P; Pearson S; Cheever CA; Clarke BP; Lewis C; Galleni M; Frère JM; Payne DJ; Bateson JH; Abdel-Meguid SS Biochemistry; 2000 Apr; 39(15):4288-98. PubMed ID: 10757977 [TBL] [Abstract][Full Text] [Related]
16. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis. Li Z; Rasmussen BA; Herzberg O Protein Sci; 1999 Jan; 8(1):249-52. PubMed ID: 10210203 [TBL] [Abstract][Full Text] [Related]
17. Binding of β-lactam antibiotics to a bioinspired dizinc complex reminiscent of the active site of metallo-β-lactamases. Wöckel S; Galezowska J; Dechert S; Meyer F Inorg Chem; 2012 Feb; 51(4):2486-93. PubMed ID: 22296309 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of the class D beta-lactamase OXA-10. Paetzel M; Danel F; de Castro L; Mosimann SC; Page MG; Strynadka NC Nat Struct Biol; 2000 Oct; 7(10):918-25. PubMed ID: 11017203 [TBL] [Abstract][Full Text] [Related]
20. Hydroxyl groups in the betabeta sandwich of metallo-beta-lactamases favor enzyme activity: Tyr218 and Ser262 pull down the lid. Oelschlaeger P; Pleiss J J Mol Biol; 2007 Feb; 366(1):316-29. PubMed ID: 17157873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]