These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 1646076)

  • 1. MuB protein allosterically activates strand transfer by the transposase of phage Mu.
    Baker TA; Mizuuchi M; Mizuuchi K
    Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway.
    Yamauchi M; Baker TA
    EMBO J; 1998 Sep; 17(18):5509-18. PubMed ID: 9736628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation.
    Mizuuchi M; Mizuuchi K
    Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase.
    Savilahti H; Mizuuchi K
    Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition.
    Mizuno N; Dramićanin M; Mizuuchi M; Adam J; Wang Y; Han YW; Yang W; Steven AC; Mizuuchi K; Ramón-Maiques S
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):E2441-50. PubMed ID: 23776210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers.
    Yang JY; Jayaram M; Harshey RM
    Cell; 1996 May; 85(3):447-55. PubMed ID: 8616899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.
    Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phage Mu transposition immunity: protein pattern formation along DNA by a diffusion-ratchet mechanism.
    Han YW; Mizuuchi K
    Mol Cell; 2010 Jul; 39(1):48-58. PubMed ID: 20603074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phage Mu transpososome core: DNA requirements for assembly and function.
    Savilahti H; Rice PA; Mizuuchi K
    EMBO J; 1995 Oct; 14(19):4893-903. PubMed ID: 7588618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration.
    Ge J; Harshey RM
    J Mol Biol; 2008 Jul; 380(4):598-607. PubMed ID: 18556020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MuA transposase separates DNA sequence recognition from catalysis.
    Goldhaber-Gordon I; Early MH; Baker TA
    Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway.
    Levchenko I; Yamauchi M; Baker TA
    Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNase protection analysis of the stable synaptic complexes involved in Mu transposition.
    Mizuuchi M; Baker TA; Mizuuchi K
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9031-5. PubMed ID: 1656459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the Mu DNA strand cleavage and intramolecular strand transfer reactions by the Mu B protein is independent of stable binding of the Mu B protein to DNA.
    Surette MG; Chaconas G
    J Biol Chem; 1991 Sep; 266(26):17306-13. PubMed ID: 1654329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism.
    Mizuuchi K; Adzuma K
    Cell; 1991 Jul; 66(1):129-40. PubMed ID: 1649006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target immunity during Mu DNA transposition. Transpososome assembly and DNA looping enhance MuA-mediated disassembly of the MuB target complex.
    Greene EC; Mizuuchi K
    Mol Cell; 2002 Dec; 10(6):1367-78. PubMed ID: 12504012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA transposition target immunity and the determinants of the MuB distribution patterns on DNA.
    Tan X; Mizuuchi M; Mizuuchi K
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):13925-9. PubMed ID: 17709741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.
    Namgoong SY; Harshey RM
    EMBO J; 1998 Jul; 17(13):3775-85. PubMed ID: 9649447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.