BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16460803)

  • 1. Localisation of heavy metals in the midgut epithelial cells of Xenillus tegeocranus (Hermann, 1804) (Acari: Oribatida).
    Pigino G; Migliorini M; Paccagnini E; Bernini F
    Ecotoxicol Environ Saf; 2006 Jul; 64(3):257-63. PubMed ID: 16460803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules.
    Pigino G; Migliorini M; Paccagnini E; Bernini F; Leonzio C
    Tissue Cell; 2005 Jun; 37(3):223-32. PubMed ID: 15936358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implication of the midgut of the centipede Lithobius forficatus in the heavy metal detoxification process.
    Vandenbulcke F; Grelle C; Fabre MC; Descamps M
    Ecotoxicol Environ Saf; 1998 Nov; 41(3):258-68. PubMed ID: 9799577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial patterns and autocorrelation in the response of microarthropods to soil pollutants: the example of oribatid mites in an abandoned mining and smelting area.
    Caruso T; Migliorini M; Bucci C; Bargagli R
    Environ Pollut; 2009 Nov; 157(11):2939-48. PubMed ID: 19586698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China.
    Bi X; Feng X; Yang Y; Qiu G; Li G; Li F; Liu T; Fu Z; Jin Z
    Environ Int; 2006 Sep; 32(7):883-90. PubMed ID: 16806473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oribatid mite communities and metal bioaccumulation in oribatid species (Acari, Oribatida) along the heavy metal gradient in forest ecosystems.
    Skubała P; Kafel A
    Environ Pollut; 2004 Nov; 132(1):51-60. PubMed ID: 15276273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ultrastructural investigation of the midgut in the quill mite Syringophilopsis fringilla (Acari, Trombidiformes: Syringophilidae).
    Filimonova SA
    Arthropod Struct Dev; 2009 Jul; 38(4):303-13. PubMed ID: 19602395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida) Gradient study in meadow ecosystems.
    Skubała P; Zaleski T
    Sci Total Environ; 2012 Jan; 414():364-72. PubMed ID: 22134027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen.
    Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R
    Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil.
    Bose S; Jain A; Rai V; Ramanathan AL
    J Hazard Mater; 2008 Dec; 160(1):187-93. PubMed ID: 18433999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leg deformities of oribatid mites as an indicator of environmental pollution.
    Eeva T; Penttinen R
    Sci Total Environ; 2009 Aug; 407(16):4771-6. PubMed ID: 19481780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.
    Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E
    J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of heavy metals and their effects on the midgut cells of a phytopaghous insect inhabiting volcanic environments.
    Rodrigues A; Cunha L; Amaral A; Medeiros J; Garcia P
    Sci Total Environ; 2008 Nov; 406(1-2):116-22. PubMed ID: 18793793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India.
    Kumar Sharma R; Agrawal M; Marshall F
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metals accumulation in soils irrigated by municipal and industrial effluent.
    Sharma OP; Bangar KS; Jain R; Sharma PK
    J Environ Sci Eng; 2004 Jan; 46(1):65-73. PubMed ID: 16649595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal content of potato chips and biscuits from Nagpur City, India.
    Gopalani M; Shahare M; Ramteke DS; Wate SR
    Bull Environ Contam Toxicol; 2007 Oct; 79(4):384-7. PubMed ID: 17713713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.