These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16460924)

  • 1. Toxin detection based on action potential shape analysis using a realistic mathematical model of differentiated NG108-15 cells.
    Mohan DK; Molnar P; Hickman JJ
    Biosens Bioelectron; 2006 Mar; 21(9):1804-11. PubMed ID: 16460924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of action potential generation in NG108-15 cells.
    Molnar P; Hickman JJ
    Methods Mol Biol; 2007; 403():175-84. PubMed ID: 18827994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of action potential generation in NG108-15 cells.
    Molnar P; Hickman JJ
    Methods Mol Biol; 2014; 1183():253-61. PubMed ID: 25023314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons.
    Huang CW; Huang CC; Lin MW; Tsai JJ; Wu SN
    Int J Neuropsychopharmacol; 2008 Aug; 11(5):597-610. PubMed ID: 18184444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel description of ionic currents recorded with the action potential clamp technique: application to excitatory currents in suprachiasmatic nucleus neurons.
    Clay JR
    J Neurophysiol; 2015 Jul; 114(1):707-16. PubMed ID: 26041831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials.
    Widmer H; Amerdeil H; Fontanaud P; Desarménien MG
    J Neurophysiol; 1997 Jan; 77(1):260-71. PubMed ID: 9120568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of toxin-induced changes in action potential shape for drug development.
    Akanda N; Molnar P; Stancescu M; Hickman JJ
    J Biomol Screen; 2009 Dec; 14(10):1228-35. PubMed ID: 19801532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.
    Liu J; Tu H; Zhang D; Zheng H; Li YL
    BMC Neurosci; 2012 Oct; 13():129. PubMed ID: 23095258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of non-inactivating Na+ current induced by oxidizing agents to the firing behavior of neuronal action potentials: experimental and theoretical studies from NG108-15 neuronal cells.
    Wu SN; Lo YC; Shen AY; Chen BS
    Chin J Physiol; 2011 Feb; 54(1):19-29. PubMed ID: 21786535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of the actions of oxaliplatin on ion currents and action potentials in differentiated NG108-15 neuronal cells.
    Wu SN; Chen BS; Wu YH; Peng H; Chen LT
    Neurotoxicology; 2009 Jul; 30(4):677-85. PubMed ID: 19422847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability.
    Wu N; Enomoto A; Tanaka S; Hsiao CF; Nykamp DQ; Izhikevich E; Chandler SH
    J Neurophysiol; 2005 May; 93(5):2710-22. PubMed ID: 15625100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Block of L-type Ca2+ current by beauvericin, a toxic cyclopeptide, in the NG108-15 neuronal cell line.
    Wu SN; Chen H; Liu YC; Chiang HT
    Chem Res Toxicol; 2002 Jun; 15(6):854-60. PubMed ID: 12067253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons.
    Blair NT; Bean BP
    J Neurosci; 2002 Dec; 22(23):10277-90. PubMed ID: 12451128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings.
    Shen GY; Chen WR; Midtgaard J; Shepherd GM; Hines ML
    J Neurophysiol; 1999 Dec; 82(6):3006-20. PubMed ID: 10601436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons.
    Fransén E; Alonso AA; Dickson CT; Magistretti J; Hasselmo ME
    Hippocampus; 2004; 14(3):368-84. PubMed ID: 15132436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved hybrid clamp: resolution of tail currents following single action potentials.
    Dietrich D; Clusmann H; Kral T
    J Neurosci Methods; 2002 Apr; 116(1):55-63. PubMed ID: 12007983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-dependent ion channels in CAD cells: A catecholaminergic neuronal line that exhibits inducible differentiation.
    Wang H; Oxford GS
    J Neurophysiol; 2000 Dec; 84(6):2888-95. PubMed ID: 11110818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stromal cell-derived factor-1alpha directly modulates voltage-dependent currents of the action potential in mammalian neuronal cells.
    Guyon A; Rovère C; Cervantes A; Allaeys I; Nahon JL
    J Neurochem; 2005 May; 93(4):963-73. PubMed ID: 15857399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action?
    Madeja M; Margineanu DG; Gorji A; Siep E; Boerrigter P; Klitgaard H; Speckmann EJ
    Neuropharmacology; 2003 Oct; 45(5):661-71. PubMed ID: 12941379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and simulation studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier potassium current (KV3.1): contribution to the firing of action potentials.
    Huang CW; Tsai JJ; Huang CC; Wu SN
    J Physiol Pharmacol; 2009 Dec; 60(4):37-47. PubMed ID: 20065495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.