These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 16461170)

  • 21. Investigating cervical muscle response and head kinematics during right, left, frontal and rear-seated perturbations.
    Sacher N; Frayne RJ; Dickey JP
    Traffic Inj Prev; 2012 Sep; 13(5):529-36. PubMed ID: 22931183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cervical muscle response to head rotation in whiplash-type left lateral impacts.
    Kumar S; Ferrari R; Narayan Y
    Spine (Phila Pa 1976); 2005 Mar; 30(5):536-41. PubMed ID: 15738786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cervical muscle response to trunk flexion in whiplash-type lateral impacts.
    Kumar S; Ferrari R; Narayan Y; Vieira ER
    Exp Brain Res; 2005 Dec; 167(3):345-51. PubMed ID: 16034573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of right anterolateral impacts: the effect of head rotation on the cervical muscle whiplash response.
    Kumar S; Ferrari R; Narayan Y
    J Neuroeng Rehabil; 2005 May; 2():11. PubMed ID: 15927056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Musculotendon and fascicle strains in anterior and posterior neck muscles during whiplash injury.
    Vasavada AN; Brault JR; Siegmund GP
    Spine (Phila Pa 1976); 2007 Apr; 32(7):756-65. PubMed ID: 17414909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of trunk flexion on the occupant neck response to anterolateral whiplash impacts.
    Kumar S; Ferrari R; Narayan Y; Vieira ER
    Am J Phys Med Rehabil; 2005 May; 84(5):346-54. PubMed ID: 15829781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Masticatory muscle reaction in simulated low-velocity rear-end impacts.
    Hernández IA; Fyfe KR; Heo G; Major PW
    J Orofac Pain; 2006; 20(3):199-207. PubMed ID: 16913429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of sternocleidomastoid muscle in simulated low velocity rear-end impacts.
    Hernández IA; Fyfe KR; Heo G; Major PW
    Eur Spine J; 2006 Jun; 15(6):876-85. PubMed ID: 16133079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematic and electromyographic response to whiplash-type impacts. Effects of head rotation and trunk flexion: summary of research.
    Kumar S; Ferrari R; Narayan Y
    Clin Biomech (Bristol, Avon); 2005 Jul; 20(6):553-68. PubMed ID: 15927733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of muscle contraction on whiplash kinematics.
    Stemper BD; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2004; 40():24-9. PubMed ID: 15133930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cervical muscle co-activation in isometric contractions is enhanced in chronic tension-type headache patients.
    Fernández-de-las-Peñas C; Falla D; Arendt-Nielsen L; Farina D
    Cephalalgia; 2008 Jul; 28(7):744-51. PubMed ID: 18460003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle pain induces task-dependent changes in cervical agonist/antagonist activity.
    Falla D; Farina D; Dahl MK; Graven-Nielsen T
    J Appl Physiol (1985); 2007 Feb; 102(2):601-9. PubMed ID: 17038492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Quantification of acute muscle pain after whiplash injury using computer-aided pressure algesimetry].
    Nebel K; Stude P; Lüdecke C; Wiese H; Diener HC; Keidel M
    Psychiatr Prax; 2004 Nov; 31 Suppl 1():S152-4. PubMed ID: 15570537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cervical electromyographic activity during low-speed rear impact.
    Magnusson ML; Pope MH; Hasselquist L; Bolte KM; Ross M; Goel VK; Lee JS; Spratt K; Clark CR; Wilder DG
    Eur Spine J; 1999; 8(2):118-25. PubMed ID: 10333150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts.
    Hedenstierna S; Halldin P
    Spine (Phila Pa 1976); 2008 Apr; 33(8):E236-45. PubMed ID: 18404093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An electromyographic study of low-velocity rear-end impacts.
    Kumar S; Narayan Y; Amell T
    Spine (Phila Pa 1976); 2002 May; 27(10):1044-55. PubMed ID: 12004171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power spectra of sternocleidomastoids, splenius capitis, and upper trapezius in oblique exertions.
    Kumar S; Narayan Y; Amell T
    Spine J; 2003; 3(5):339-50. PubMed ID: 14588944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passenger muscle responses in lane change and lane change with braking maneuvers using two belt configurations: Standard and reversible pre-pretensioner.
    Ghaffari G; Brolin K; Pipkorn B; Jakobsson L; Davidsson J
    Traffic Inj Prev; 2019; 20(sup1):S43-S51. PubMed ID: 31381435
    [No Abstract]   [Full Text] [Related]  

  • 39. Comparison of human impact response in restraint systems with and without a negative G strap.
    Hearon BF; Brinkley JW
    Aviat Space Environ Med; 1986 Apr; 57(4):301-12. PubMed ID: 3964158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Internal loads in the cervical spine during motor vehicle rear-end impacts: the effect of acceleration and head-to-head restraint proximity.
    Tencer AF; Mirza S; Bensel K
    Spine (Phila Pa 1976); 2002 Jan; 27(1):34-42. PubMed ID: 11805633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.