These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16461397)

  • 21. DNA Catenation Reveals the Dynamics of DNA Topology During Replication.
    Castán A; Hernández P; Krimer DB; Schvartzman JB
    Methods Mol Biol; 2018; 1703():75-86. PubMed ID: 29177734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo analysis of the conformation of DNA catenanes.
    Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1993 Aug; 232(4):1130-40. PubMed ID: 8371271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topological Linkage of DNA Tiles Bonded by Paranemic Cohesion.
    Ohayon YP; Sha R; Flint O; Chandrasekaran AR; Abdallah HO; Wang T; Wang X; Zhang X; Seeman NC
    ACS Nano; 2015 Oct; 9(10):10296-303. PubMed ID: 26364680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereoselectivity of DNA catenane fusion by resolvase.
    Stark WM; Parker CN; Halford SE; Boocock MR
    Nature; 1994 Mar; 368(6466):76-8. PubMed ID: 8107889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The helical repeat of double-stranded DNA varies as a function of catenation and supercoiling.
    Wasserman SA; White JH; Cozzarelli NR
    Nature; 1988 Aug; 334(6181):448-50. PubMed ID: 3043227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separate production of single-stranded DNA is not necessary: circuit denaturation of double-stranded DNA followed by hybridization of single strands on oligonucleotide microchips.
    Vasiliskov VA; Chudinov AV; Chechetkin VR; Surzhikov SA; Zasedatelev AS; Mikhailovich VM
    J Biomol Struct Dyn; 2009 Dec; 27(3):347-60. PubMed ID: 19795917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel family of structurally stable double stranded DNA catenanes.
    Lohmann F; Valero J; Famulok M
    Chem Commun (Camb); 2014 Jun; 50(46):6091-3. PubMed ID: 24777123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation and size determination of circular and linear single-stranded DNAs by alkaline agarose gel electrophoresis.
    Shin S; Day LA
    Anal Biochem; 1995 Apr; 226(2):202-6. PubMed ID: 7793618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Creating complex molecular topologies by configuring DNA four-way junctions.
    Liu D; Chen G; Akhter U; Cronin TM; Weizmann Y
    Nat Chem; 2016 Oct; 8(10):907-14. PubMed ID: 27657865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanopore translocation of topologically linked DNA catenanes.
    Rheaume SN; Klotz AR
    Phys Rev E; 2023 Feb; 107(2-1):024504. PubMed ID: 36932513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulation of Supercoiled, Knotted, and Catenated DNA Molecules, Including Modeling of Action of DNA Gyrase.
    Racko D; Benedetti F; Dorier J; Burnier Y; Stasiak A
    Methods Mol Biol; 2017; 1624():339-372. PubMed ID: 28842894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EMSA and single-molecule force spectroscopy study of interactions between Bacillus subtilis single-stranded DNA-binding protein and single-stranded DNA.
    Zhang W; Lü X; Zhang W; Shen J
    Langmuir; 2011 Dec; 27(24):15008-15. PubMed ID: 22054219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting knot or catenane type of site-specific recombination products.
    Buck D; Flapan E
    J Mol Biol; 2007 Dec; 374(5):1186-99. PubMed ID: 17996894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parallel triplex structure formed between stretched single-stranded DNA and homologous duplex DNA.
    Chen J; Tang Q; Guo S; Lu C; Le S; Yan J
    Nucleic Acids Res; 2017 Sep; 45(17):10032-10041. PubMed ID: 28973442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human Rad52 facilitates a three-stranded pairing that follows no strand exchange: a novel pairing function of the protein.
    Navadgi VM; Dutta A; Rao BJ
    Biochemistry; 2003 Dec; 42(51):15237-51. PubMed ID: 14690434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.
    Roth E; Glick Azaria A; Girshevitz O; Bitler A; Garini Y
    Nano Lett; 2018 Nov; 18(11):6703-6709. PubMed ID: 30352164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA.
    Tolstonog GV; Li G; Shoeman RL; Traub P
    DNA Cell Biol; 2005 Feb; 24(2):85-110. PubMed ID: 15699629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectrometric identification of lysines involved in the interaction of human replication protein a with single-stranded DNA.
    Shell SM; Hess S; Kvaratskhelia M; Zou Y
    Biochemistry; 2005 Jan; 44(3):971-8. PubMed ID: 15654753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair.
    Marceau AH
    Methods Mol Biol; 2012; 922():1-21. PubMed ID: 22976174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.