These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 16461461)

  • 21. Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread.
    Giles JR; Cummings DAT; Grenfell BT; Tatem AJ; Erbach-Schoenberg EZ; Metcalf C; Wesolowski A
    PLoS Comput Biol; 2021 Aug; 17(8):e1009127. PubMed ID: 34375331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Air Travel and TB: an airline perspective.
    Dowdall NP; Evans AD; Thibeault C
    Travel Med Infect Dis; 2010 Mar; 8(2):96-103. PubMed ID: 20478517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal test-kit-based intervention strategy of epidemic spreading in heterogeneous complex networks.
    Ghosh S; Senapati A; Chattopadhyay J; Hens C; Ghosh D
    Chaos; 2021 Jul; 31(7):071101. PubMed ID: 34340350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stochastic analysis of epidemics on adaptive time varying networks.
    Kotnis B; Kuri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062810. PubMed ID: 23848732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the impact of Covid-19 on air traffic volume in Turkish airspace using artificial neural networks and time series.
    Gultekin N; Acik Kemaloglu S
    Sci Rep; 2023 Apr; 13(1):6551. PubMed ID: 37085537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climatic similarity and biological exchange in the worldwide airline transportation network.
    Tatem AJ; Hay SI
    Proc Biol Sci; 2007 Jun; 274(1617):1489-96. PubMed ID: 17426013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epidemionics: from the host-host interactions to the systematic analysis of the emergent macroscopic dynamics of epidemic networks.
    Reppas AI; Spiliotis KG; Siettos CI
    Virulence; 2010; 1(4):338-49. PubMed ID: 21178467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stochastic Periodic Solution of a Susceptible-Infective Epidemic Model in a Polluted Environment under Environmental Fluctuation.
    Zhao Y; Li J; Ma X
    Comput Math Methods Med; 2018; 2018():7360685. PubMed ID: 29853987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility.
    Balcan D; Hu H; Goncalves B; Bajardi P; Poletto C; Ramasco JJ; Paolotti D; Perra N; Tizzoni M; Van den Broeck W; Colizza V; Vespignani A
    BMC Med; 2009 Sep; 7():45. PubMed ID: 19744314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamical patterns of epidemic outbreaks in complex heterogeneous networks.
    Barthélemy M; Barrat A; Pastor-Satorras R; Vespignani A
    J Theor Biol; 2005 Jul; 235(2):275-88. PubMed ID: 15862595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impacts of Road Traffic Network and Socioeconomic Factors on the Diffusion of 2009 Pandemic Influenza A (H1N1) in Mainland China.
    Xu B; Tian H; Sabel CE; Xu B
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30959783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Risk of global spread of Middle East respiratory syndrome coronavirus (MERS-CoV) via the air transport network.
    Gardner LM; Chughtai AA; MacIntyre CR
    J Travel Med; 2016 Jun; 23(6):. PubMed ID: 27601536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Network-Based Stochastic Epidemic Simulator: Controlling COVID-19 With Region-Specific Policies.
    Kuzdeuov A; Baimukashev D; Karabay A; Ibragimov B; Mirzakhmetov A; Nurpeiissov M; Lewis M; Atakan Varol H
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2743-2754. PubMed ID: 32749979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing the dynamics underlying global spread of epidemics.
    Wang L; Wu JT
    Nat Commun; 2018 Jan; 9(1):218. PubMed ID: 29335536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model-based tool to predict the propagation of infectious disease via airports.
    Hwang GM; Mahoney PJ; James JH; Lin GC; Berro AD; Keybl MA; Goedecke DM; Mathieu JJ; Wilson T
    Travel Med Infect Dis; 2012 Jan; 10(1):32-42. PubMed ID: 22245113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metapopulation epidemic models with heterogeneous mixing and travel behaviour.
    Apolloni A; Poletto C; Ramasco JJ; Jensen P; Colizza V
    Theor Biol Med Model; 2014 Jan; 11():3. PubMed ID: 24418011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequent travelers and rate of spread of epidemics.
    Hollingsworth TD; Ferguson NM; Anderson RM
    Emerg Infect Dis; 2007 Sep; 13(9):1288-94. PubMed ID: 18252097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time evolution of predictability of epidemics on networks.
    Holme P; Takaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042811. PubMed ID: 25974551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneous population dynamics and scaling laws near epidemic outbreaks.
    Widder A; Kuehn C
    Math Biosci Eng; 2016 Oct; 13(5):1093-1118. PubMed ID: 27775399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association between air travel and importation of chikungunya into the USA.
    Nasserie T; Brent SE; Tuite AR; Moineddin R; Yong JHE; Miniota J; Bogoch II; Watts AG; Khan K
    J Travel Med; 2019 Jun; 26(5):. PubMed ID: 31011752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.