BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 16461583)

  • 1. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9.
    Wang CJ; Harper L; Cande WZ
    Plant Cell; 2006 Mar; 18(3):529-44. PubMed ID: 16461583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.
    Figueroa DM; Bass HW
    Chromosome Res; 2012 May; 20(4):363-80. PubMed ID: 22588802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating genetic linkage maps with pachytene chromosome structure in maize.
    Anderson LK; Salameh N; Bass HW; Harper LC; Cande WZ; Weber G; Stack SM
    Genetics; 2004 Apr; 166(4):1923-33. PubMed ID: 15126409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones.
    Koumbaris GL; Bass HW
    Plant J; 2003 Sep; 35(5):647-59. PubMed ID: 12940957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion.
    Amarillo FI; Bass HW
    Genetics; 2007 Nov; 177(3):1509-26. PubMed ID: 17947405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development.
    Danilova TV; Birchler JA
    Chromosoma; 2008 Aug; 117(4):345-56. PubMed ID: 18317793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytogenetic mapping in maize.
    Wang CJ; Chen CC
    Cytogenet Genome Res; 2005; 109(1-3):63-9. PubMed ID: 15753560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes.
    Lamb JC; Danilova T; Bauer MJ; Meyer JM; Holland JJ; Jensen MD; Birchler JA
    Genetics; 2007 Mar; 175(3):1047-58. PubMed ID: 17237520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher axial-resolution and sensitivity pachytene fluorescence in situ hybridization protocol in tetraploid cotton.
    Wang K; Yang Z; Shu C; Hu J; Lin Q; Zhang W; Guo W; Zhang T
    Chromosome Res; 2009; 17(8):1041-50. PubMed ID: 19844799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation.
    Koo DH; Jiang J
    Plant J; 2009 Aug; 59(3):509-16. PubMed ID: 19392688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes.
    Anderson LK; Lai A; Stack SM; Rizzon C; Gaut BS
    Genome Res; 2006 Jan; 16(1):115-22. PubMed ID: 16339046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization.
    Sadder MT; Ponelies N; Born U; Weber G
    Genome; 2000 Dec; 43(6):1081-3. PubMed ID: 11195341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber.
    Lou Q; He Y; Cheng C; Zhang Z; Li J; Huang S; Chen J
    PLoS One; 2013; 8(5):e62676. PubMed ID: 23671621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).
    Ohmido N; Iwata A; Kato S; Wako T; Fukui K
    PLoS One; 2018; 13(4):e0195710. PubMed ID: 29672536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of genetic, physical, and cytogenetic maps for Brassica rapa chromosome A7.
    Xiong Z; Kim JS; Pires JC
    Cytogenet Genome Res; 2010 Jul; 129(1-3):190-8. PubMed ID: 20628251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa.
    Kirov IV; Van Laere K; Khrustaleva LI
    BMC Genet; 2015 Jul; 16():74. PubMed ID: 26134672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The selection and use of sorghum (Sorghum propinquum) bacterial artificial chromosomes as cytogenetic FISH probes for maize (Zea mays L.).
    Figueroa DM; Davis JD; Strobel C; Conejo MS; Beckham KD; Ring BC; Bass HW
    J Biomed Biotechnol; 2011; 2011():386862. PubMed ID: 21234422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cytogenetic maps and their applications in plants].
    Xiong HY; Zhao LJ; Li LJ
    Yi Chuan; 2005 Jul; 27(4):659-64. PubMed ID: 16120595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.).
    Huang W; Du Y; Zhao X; Jin W
    BMC Plant Biol; 2016 Apr; 16():88. PubMed ID: 27083560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative FISH mapping of Daucus species (Apiaceae family).
    Iovene M; Cavagnaro PF; Senalik D; Buell CR; Jiang J; Simon PW
    Chromosome Res; 2011 May; 19(4):493-506. PubMed ID: 21547583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.