These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 16461589)
1. Differential regulation of the cell-surface targeting and function of beta- and alpha1-adrenergic receptors by Rab1 GTPase in cardiac myocytes. Filipeanu CM; Zhou F; Fugetta EK; Wu G Mol Pharmacol; 2006 May; 69(5):1571-8. PubMed ID: 16461589 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the cell surface expression and function of angiotensin II type 1 receptor by Rab1-mediated endoplasmic reticulum-to-Golgi transport in cardiac myocytes. Filipeanu CM; Zhou F; Claycomb WC; Wu G J Biol Chem; 2004 Sep; 279(39):41077-84. PubMed ID: 15252015 [TBL] [Abstract][Full Text] [Related]
3. Rab1 GTPase promotes expression of beta-adrenergic receptors in rat pulmonary microvascular endothelial cells. Li Y; Wang G; Lin K; Yin H; Zhou C; Liu T; Wu G; Qian G Int J Biochem Cell Biol; 2010 Jul; 42(7):1201-1209. PubMed ID: 20417717 [TBL] [Abstract][Full Text] [Related]
4. Distinct pathways for the trafficking of angiotensin II and adrenergic receptors from the endoplasmic reticulum to the cell surface: Rab1-independent transport of a G protein-coupled receptor. Wu G; Zhao G; He Y J Biol Chem; 2003 Nov; 278(47):47062-9. PubMed ID: 12970354 [TBL] [Abstract][Full Text] [Related]
5. Regulation of anterograde transport of adrenergic and angiotensin II receptors by Rab2 and Rab6 GTPases. Dong C; Wu G Cell Signal; 2007 Nov; 19(11):2388-99. PubMed ID: 17716866 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the trafficking and function of G protein-coupled receptors by Rab1 GTPase in cardiomyocytes. Wu G Methods Enzymol; 2008; 438():227-38. PubMed ID: 18413252 [TBL] [Abstract][Full Text] [Related]
8. Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. Akhter SA; Milano CA; Shotwell KF; Cho MC; Rockman HA; Lefkowitz RJ; Koch WJ J Biol Chem; 1997 Aug; 272(34):21253-9. PubMed ID: 9261135 [TBL] [Abstract][Full Text] [Related]
9. Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Koshimizu TA; Tsujimoto G; Hirasawa A; Kitagawa Y; Tanoue A Cardiovasc Res; 2004 Sep; 63(4):662-72. PubMed ID: 15306222 [TBL] [Abstract][Full Text] [Related]
10. Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. Huang HH; Brennan TC; Muir MM; Mason RS J Cell Physiol; 2009 Jul; 220(1):267-75. PubMed ID: 19334040 [TBL] [Abstract][Full Text] [Related]
13. Alpha1-adrenergic receptor subtype mRNAs are differentially regulated by alpha1-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo. Repression of alpha1B and alpha1D but induction of alpha1C. Rokosh DG; Stewart AF; Chang KC; Bailey BA; Karliner JS; Camacho SA; Long CS; Simpson PC J Biol Chem; 1996 Mar; 271(10):5839-43. PubMed ID: 8621454 [TBL] [Abstract][Full Text] [Related]
14. Developmental changes in beta2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Rybin VO; Pak E; Alcott S; Steinberg SF Mol Pharmacol; 2003 Jun; 63(6):1338-48. PubMed ID: 12761344 [TBL] [Abstract][Full Text] [Related]
15. Cross talk between angiotensin AT1 and alpha 1-adrenergic receptors: angiotensin II downregulates alpha 1a-adrenergic receptor subtype mRNA and density in neonatal rat cardiac myocytes. Li HT; Long CS; Gray MO; Rokosh DG; Honbo NY; Karliner JS Circ Res; 1997 Sep; 81(3):396-403. PubMed ID: 9285642 [TBL] [Abstract][Full Text] [Related]
16. The alpha-1D Is the predominant alpha-1-adrenergic receptor subtype in human epicardial coronary arteries. Jensen BC; Swigart PM; Laden ME; DeMarco T; Hoopes C; Simpson PC J Am Coll Cardiol; 2009 Sep; 54(13):1137-45. PubMed ID: 19761933 [TBL] [Abstract][Full Text] [Related]
17. Expression and activity of protein kinase D/protein kinase C mu in myocardium: evidence for alpha1-adrenergic receptor- and protein kinase C-mediated regulation. Haworth RS; Goss MW; Rozengurt E; Avkiran M J Mol Cell Cardiol; 2000 Jun; 32(6):1013-23. PubMed ID: 10888254 [TBL] [Abstract][Full Text] [Related]
18. Diverse regulation of cardiac expression of relaxin receptor by α1- and β1-adrenoceptors. Moore XL; Su Y; Fan Y; Zhang YY; Woodcock EA; Dart AM; Du XJ Cardiovasc Drugs Ther; 2014 Jun; 28(3):221-8. PubMed ID: 24852484 [TBL] [Abstract][Full Text] [Related]
19. Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent. Myagmar BE; Flynn JM; Cowley PM; Swigart PM; Montgomery MD; Thai K; Nair D; Gupta R; Deng DX; Hosoda C; Melov S; Baker AJ; Simpson PC Circ Res; 2017 Mar; 120(7):1103-1115. PubMed ID: 28219977 [TBL] [Abstract][Full Text] [Related]
20. Receptor- and cellular compartment-specific activation of the cAMP/PKA pathway by α Martin RD; Sun Y; Bourque K; Audet N; Inoue A; Tanny JC; Hébert TE Cell Signal; 2018 Apr; 44():43-50. PubMed ID: 29329779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]