These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 16461715)
41. The synergistic activity between Cry1Aa and Cry1c from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Xue JL; Cai QX; Zheng DS; Yuan ZM Lett Appl Microbiol; 2005; 40(6):460-5. PubMed ID: 15892743 [TBL] [Abstract][Full Text] [Related]
42. Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Escriche B; Tabashnik B; Finson N; Ferré J Biochem Biophys Res Commun; 1995 Jul; 212(2):388-95. PubMed ID: 7626052 [TBL] [Abstract][Full Text] [Related]
43. Synergistic activity between Bacillus thuringiensis Cry1Ab and Cry1Ac toxins against maize stem borer (Chilo partellus Swinhoe). Sharma P; Nain V; Lakhanpaul S; Kumar PA Lett Appl Microbiol; 2010 Jul; 51(1):42-7. PubMed ID: 20536706 [TBL] [Abstract][Full Text] [Related]
44. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2003 Oct; 69(10):5898-906. PubMed ID: 14532042 [TBL] [Abstract][Full Text] [Related]
45. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. de Barros Moreira Beltrão H; Silva-Filha MH FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151 [TBL] [Abstract][Full Text] [Related]
46. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
47. Detection of Choristoneura fumiferana brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by crossed affinity immunoelectrophoresis. Pang AS Biochem Biophys Res Commun; 1994 Mar; 199(3):1194-9. PubMed ID: 8147860 [TBL] [Abstract][Full Text] [Related]
48. Selective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dissociated epithelial cells from Bombyx mori. Ibiza-Palacios MS; Ferré J; Higurashi S; Miyamoto K; Sato R; Escriche B Biochem J; 2008 Jan; 409(1):215-21. PubMed ID: 17725543 [TBL] [Abstract][Full Text] [Related]
49. Exchange of domain I from Bacillus thuringiensis Cry1 Toxins Influences protoxin stability and crystal formation. Rang C; Vachon V; Coux F; Carret C; Moar WJ; Brousseau R; Schwartz JL; Laprade R; Frutos R Curr Microbiol; 2001 Jul; 43(1):1-6. PubMed ID: 11375655 [TBL] [Abstract][Full Text] [Related]
50. Susceptibility of legume pod borer (LPB), Maruca vitrata to delta-endotoxins of Bacillus thuringiensis (Bt) in Taiwan. Srinivasan R J Invertebr Pathol; 2008 Jan; 97(1):79-81. PubMed ID: 17689558 [TBL] [Abstract][Full Text] [Related]
51. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Abdelkefi-Mesrati L; Boukedi H; Dammak-Karray M; Sellami-Boudawara T; Jaoua S; Tounsi S J Invertebr Pathol; 2011 Feb; 106(2):250-4. PubMed ID: 20965198 [TBL] [Abstract][Full Text] [Related]
52. Influence of oxalic and malic acids in chickpea leaf exudates on the biological activity of CryIAc towards Helicoverpa armigera. Devi VS; Sharma HC; Rao PA J Insect Physiol; 2013 Apr; 59(4):394-9. PubMed ID: 23391855 [TBL] [Abstract][Full Text] [Related]
53. Stable immobilization of lipid vesicles for kinetic studies using surface plasmon resonance. Masson L; Mazza A; Brousseau R Anal Biochem; 1994 May; 218(2):405-12. PubMed ID: 8074300 [TBL] [Abstract][Full Text] [Related]
54. Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth (Plutella xylostella L) from lowland Malaysia. Sayyed AH; Wright DJ Pest Manag Sci; 2001 May; 57(5):413-21. PubMed ID: 11374157 [TBL] [Abstract][Full Text] [Related]
55. Bacillus thuringiensis crystal proteins CRY1Ab and CRY1Fa share a high affinity binding site in Plutella xylostella (L.). Granero F; Ballester V; Ferré J Biochem Biophys Res Commun; 1996 Jul; 224(3):779-83. PubMed ID: 8713122 [TBL] [Abstract][Full Text] [Related]
56. Binding of Bacillus thuringiensis Cry1A toxins with brush border membrane vesicles of maize stem borer (Chilo partellus Swinhoe). Sharma P; Nain V; Lakhanpaul S; Kumar PA J Invertebr Pathol; 2011 Feb; 106(2):333-5. PubMed ID: 20831871 [TBL] [Abstract][Full Text] [Related]
57. Role of tryptophan residues in toxicity of Cry1Ab toxin from Bacillus thuringiensis. Padilla C; Pardo-López L; de la Riva G; Gómez I; Sánchez J; Hernandez G; Nuñez ME; Carey MP; Dean DH; Alzate O; Soberón M; Bravo A Appl Environ Microbiol; 2006 Jan; 72(1):901-7. PubMed ID: 16391132 [TBL] [Abstract][Full Text] [Related]
58. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482 [TBL] [Abstract][Full Text] [Related]
59. Bacillus thuringiensis Cry1Ac toxin-binding and pore-forming activity in brush border membrane vesicles prepared from anterior and posterior midgut regions of lepidopteran larvae. Rodrigo-Simón A; Caccia S; Ferré J Appl Environ Microbiol; 2008 Mar; 74(6):1710-6. PubMed ID: 18223107 [TBL] [Abstract][Full Text] [Related]
60. Activity of Bacillus thuringiensis toxins against cocoa pod borer larvae. Santoso D; Chaidamsari T; Wiryadiputra S; de Maagd RA Pest Manag Sci; 2004 Aug; 60(8):735-8. PubMed ID: 15307664 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]