These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 16461980)

  • 1. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis.
    Lankinen P; Forsman P
    J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic correlation between circadian eclosion rhythm and photoperiodic diapause in Drosophila littoralis.
    Lankinen P
    J Biol Rhythms; 1986; 1(2):101-18. PubMed ID: 2979577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae.
    Joshi DS; Gore AP
    Indian J Exp Biol; 1999 Jul; 37(7):718-24. PubMed ID: 10522160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina.
    Thakurdas P; Sharma S; Vanlalhriatpuia K; Sinam B; Chib M; Shivagaje A; Joshi D
    Chronobiol Int; 2009 Dec; 26(8):1575-86. PubMed ID: 20030541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects.
    Bradshaw WE; Holzapfel CM
    J Biol Rhythms; 2010 Jun; 25(3):155-65. PubMed ID: 20484687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change of rhythmicity.
    Watari Y
    J Insect Physiol; 2005 Jan; 51(1):11-6. PubMed ID: 15686641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.
    Van Gelder RN; Krasnow MA
    EMBO J; 1996 Apr; 15(7):1625-31. PubMed ID: 8612586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new gene encoding a putative transcription factor regulated by the Drosophila circadian clock.
    Rouyer F; Rachidi M; Pikielny C; Rosbash M
    EMBO J; 1997 Jul; 16(13):3944-54. PubMed ID: 9233804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles and problems revolving around rhythm-related genetic variants.
    Hall JC; Chang DC; Dolezelova E
    Cold Spring Harb Symp Quant Biol; 2007; 72():215-32. PubMed ID: 18419279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latitudinal clines in the properties of a circadian pacemaker.
    Pittendrigh CS; Takamura T
    J Biol Rhythms; 1989; 4(2):217-35. PubMed ID: 2519590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In search of clinal variation in the period and clock timing genes in Australian Drosophila melanogaster populations.
    Weeks AR; McKechnie SW; Hoffmann AA
    J Evol Biol; 2006 Mar; 19(2):551-7. PubMed ID: 16599931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution and population genetics of circadian clock genes.
    Tauber E; Kyriacou CP
    Methods Enzymol; 2005; 393():797-817. PubMed ID: 15817325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae.
    Shiga S; Numata H
    J Exp Biol; 2009 Mar; 212(Pt 6):867-77. PubMed ID: 19252004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible role of eclosion rhythm in mediating the effects of light-dark environments on pre-adult development in Drosophila melanogaster.
    Paranjpe DA; Anitha D; Chandrashekaran MK; Joshi A; Sharma VK
    BMC Dev Biol; 2005 Feb; 5():5. PubMed ID: 15725348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mendelian inheritance of pupal diapause in the flesh fly, Sarcophaga bullata.
    Han B; Denlinger DL
    J Hered; 2009; 100(2):251-5. PubMed ID: 18836144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanda-Hamner Curves Show Huge Latitudinal Variation but No Circadian Components in
    Lankinen P; Kastally C; Hoikkala A
    J Biol Rhythms; 2021 Jun; 36(3):226-238. PubMed ID: 33745359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae.
    Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males.
    Ikeno T; Numata H; Goto SG
    J Insect Physiol; 2011 Jul; 57(7):935-8. PubMed ID: 21550348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two oscillators might control the locomotor activity rhythm of the high-altitude Himalayan strain of Drosophila helvetica.
    Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(5):821-34. PubMed ID: 17994339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural variation in a Drosophila clock gene and temperature compensation.
    Sawyer LA; Hennessy JM; Peixoto AA; Rosato E; Parkinson H; Costa R; Kyriacou CP
    Science; 1997 Dec; 278(5346):2117-20. PubMed ID: 9405346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.