BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1646301)

  • 1. Modulation of calcium channels in human retinal glial cells by basic fibroblast growth factor: a possible role in retinal pathobiology.
    Puro DG; Mano T
    J Neurosci; 1991 Jun; 11(6):1873-80. PubMed ID: 1646301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A calcium-activated, calcium-permeable ion channel in human retinal glial cells: modulation by basic fibroblast growth factor.
    Puro DG
    Brain Res; 1991 May; 548(1-2):329-33. PubMed ID: 1651144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules.
    Sakagami K; Wu DM; Puro DG
    J Physiol; 1999 Dec; 521 Pt 3(Pt 3):637-50. PubMed ID: 10601495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitogenic and chemotactic effects of platelet-derived growth factor on human retinal glial cells.
    Uchihori Y; Puro DG
    Invest Ophthalmol Vis Sci; 1991 Sep; 32(10):2689-95. PubMed ID: 1654308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal glial cell proliferation and ion channels: a possible link.
    Puro DG; Roberge F; Chan CC
    Invest Ophthalmol Vis Sci; 1989 Mar; 30(3):521-9. PubMed ID: 2466809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered regulation of L-type channels by protein kinase C and protein tyrosine kinases as a pathophysiologic effect in retinal degeneration.
    Mergler S; Steinhausen K; Wiederholt M; Strauss O
    FASEB J; 1998 Sep; 12(12):1125-34. PubMed ID: 9737715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Müller (glial) cell in normal and diseased retina: a case for single-cell electrophysiology.
    Reichenbach A; Faude F; Enzmann V; Bringmann A; Pannicke T; Francke M; Biedermann B; Kuhrt H; Stolzenburg JU; Skatchkov SN; Heinemann U; Wiedemann P; Reichelt W
    Ophthalmic Res; 1997; 29(5):326-40. PubMed ID: 9323724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium channels in solitary retinal ganglion cells from post-natal rat.
    Karschin A; Lipton SA
    J Physiol; 1989 Nov; 418():379-96. PubMed ID: 2559971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained calcium influx activated by basic fibroblast growth factor in Balb-c 3T3 fibroblasts.
    Munaron L; Distasi C; Carabelli V; Baccino FM; Bonelli G; Lovisolo D
    J Physiol; 1995 May; 484 ( Pt 3)(Pt 3):557-66. PubMed ID: 7623276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombin stimulates the proliferation of human retinal glial cells.
    Puro DG; Mano T; Chan CC; Fukuda M; Shimada H
    Graefes Arch Clin Exp Ophthalmol; 1990; 228(2):169-73. PubMed ID: 2186973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockade of Ca2+-activated K+ channels inhibits proliferation of human endothelial cells induced by basic fibroblast growth factor.
    Wiecha J; Münz B; Wu Y; Noll T; Tillmanns H; Waldecker B
    J Vasc Res; 1998; 35(5):363-71. PubMed ID: 9789117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ channels in retinal pigment epithelial cells regulate vascular endothelial growth factor secretion rates in health and disease.
    Rosenthal R; Heimann H; Agostini H; Martin G; Hansen LL; Strauss O
    Mol Vis; 2007 Mar; 13():443-56. PubMed ID: 17417605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phagocytosis by human retinal glial cells in culture.
    Mano T; Puro DG
    Invest Ophthalmol Vis Sci; 1990 Jun; 31(6):1047-55. PubMed ID: 2162333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum-induced changes in the physiology of mammalian retinal glial cells: role of lysophosphatidic acid.
    Kusaka S; Kapousta-Bruneau N; Green DG; Puro DG
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):445-58. PubMed ID: 9490871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent ionic currents in solitary horizontal cells isolated from cat retina.
    Ueda Y; Kaneko A; Kaneda M
    J Neurophysiol; 1992 Oct; 68(4):1143-50. PubMed ID: 1279133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Farnesol modulates membrane currents in human retinal glial cells.
    Bringmann A; Skatchkov SN; Faude F; Enzmann V; Reichenbach A
    J Neurosci Res; 2000 Nov; 62(3):396-402. PubMed ID: 11054809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+) channel-mediated currents in retinal glial (Müller) cells of the toad (Bufo marinus).
    Bringmann A; Pannicke T; Reichenbach A; Skatchkov SN
    Neurosci Lett; 2000 Mar; 281(2-3):155-8. PubMed ID: 10704766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of NMDA receptor-channels in human retinal Müller glial cells inhibits inward-rectifying potassium currents.
    Puro DG; Yuan JP; Sucher NJ
    Vis Neurosci; 1996; 13(2):319-26. PubMed ID: 8737283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic fibroblast growth factor-induced endothelial proliferation and NO synthesis involves inward rectifier K+ current.
    Scharbrodt W; Kuhlmann CR; Wu Y; Schaefer CA; Most AK; Backenköhler U; Neumann T; Tillmanns H; Waldecker B; Erdogan A; Wiecha J
    Arterioscler Thromb Vasc Biol; 2004 Jul; 24(7):1229-33. PubMed ID: 15130912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of retinal glial cell proliferation by antiproliferative molecules.
    Ikeda T; Puro DG
    Exp Eye Res; 1995 Apr; 60(4):435-43. PubMed ID: 7789423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.