These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Reinforcing abiotic and biotic time constraints facilitate the broad distribution of a generalist with fixed traits. Greig HS; Wissinger SA Ecology; 2010 Mar; 91(3):836-46. PubMed ID: 20426341 [TBL] [Abstract][Full Text] [Related]
4. Predator size and phenology shape prey survival in temporary ponds. Urban MC Oecologia; 2007 Dec; 154(3):571-80. PubMed ID: 17891545 [TBL] [Abstract][Full Text] [Related]
5. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study. Klecka J; Boukal DS J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526 [TBL] [Abstract][Full Text] [Related]
6. Larval cannibalism, time constraints, and adult fitness in caddisflies that inhabit temporary wetlands. Wissinger S; Steinmetz J; Alexander JS; Brown W Oecologia; 2004 Jan; 138(1):39-47. PubMed ID: 14530962 [TBL] [Abstract][Full Text] [Related]
7. Density-dependent effects of multiple predators sharing a common prey in an endophytic habitat. Aukema BH; Clayton MK; Raffa KF Oecologia; 2004 May; 139(3):418-26. PubMed ID: 14968356 [TBL] [Abstract][Full Text] [Related]
8. A tale of two diversifications: reciprocal habitat shifts to fill ecological space along the pond permanence gradient. Stoks R; McPeek MA Am Nat; 2006 Dec; 168 Suppl 6():S50-72. PubMed ID: 17109329 [TBL] [Abstract][Full Text] [Related]
9. Evaluating predation pressure on green treefrog larvae across a habitat gradient. Gunzburger MS; Travis J Oecologia; 2004 Aug; 140(3):422-9. PubMed ID: 15179584 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear effects of consumer density on multiple ecosystem processes. Klemmer AJ; Wissinger SA; Greig HS; Ostrofsky ML J Anim Ecol; 2012 Jul; 81(4):770-80. PubMed ID: 22339437 [TBL] [Abstract][Full Text] [Related]
12. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web. Davenport JM; Chalcraft DR J Anim Ecol; 2012 Jan; 81(1):242-50. PubMed ID: 21950407 [TBL] [Abstract][Full Text] [Related]
13. Top predators and habitat complexity alter an intraguild predation module in pond communities. Anderson TL; Semlitsch RD J Anim Ecol; 2016 Mar; 85(2):548-58. PubMed ID: 26476095 [TBL] [Abstract][Full Text] [Related]
14. Predator-prey relationships among larval dragonflies, salamanders, and frogs. Caldwell JP; Thorp JH; Jervey TO Oecologia; 1980 Sep; 46(3):285-289. PubMed ID: 28310033 [TBL] [Abstract][Full Text] [Related]
15. A growth/mortality trade-off in larval salamanders and the coexistence of intraguild predators and prey. Yurewicz KL Oecologia; 2004 Jan; 138(1):102-11. PubMed ID: 14513352 [TBL] [Abstract][Full Text] [Related]
16. Habitat structural complexity mediates the foraging success of multiple predator species. Warfe DM; Barmuta LA Oecologia; 2004 Sep; 141(1):171-8. PubMed ID: 15300485 [TBL] [Abstract][Full Text] [Related]
17. Differential Responses of Two Ecologically Similar Case-Bearing Caddisfly Species to a Fish Chemical Cue: Implications for a Coexistence Mechanism. Okano JI; Tayasu I; Nakano SI; Okuda N Zoolog Sci; 2017 Dec; 34(6):461-467. PubMed ID: 29219044 [TBL] [Abstract][Full Text] [Related]
18. Differential vulnerability to predation and refuge use in competing larval salamanders. Walls SC Oecologia; 1995 Jan; 101(1):86-93. PubMed ID: 28306980 [TBL] [Abstract][Full Text] [Related]
19. PVC and PET microplastics in caddisfly (Lepidostoma basale) cases reduce case stability. Ehlers SM; Al Najjar T; Taupp T; Koop JHE Environ Sci Pollut Res Int; 2020 Jun; 27(18):22380-22389. PubMed ID: 32314284 [TBL] [Abstract][Full Text] [Related]
20. The significance of refuge heterogeneity for lowland stream caddisfly larvae to escape from drift. de Brouwer JHF; Kraak MHS; Besse-Lototskaya AA; Verdonschot PFM Sci Rep; 2019 Feb; 9(1):2140. PubMed ID: 30765828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]