These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16463254)

  • 41. Modification to improve efficiency of sampling schedules for BA/BE testing of FDC anti-tuberculosis drugs.
    Gabriels GA; McIlleron H; Smith PJ; Folb PI; Fourie PB
    Int J Tuberc Lung Dis; 2007 Feb; 11(2):181-8. PubMed ID: 17263289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cannulation of the jugular vein in mice: a method for serial withdrawal of blood samples.
    Bardelmeijer HA; Buckle T; Ouwehand M; Beijnen JH; Schellens JH; van Tellingen O
    Lab Anim; 2003 Jul; 37(3):181-7. PubMed ID: 12869279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving the decision to pursue a phase 3 clinical trial by adjusting for patient-specific factors in evaluating phase 2 treatment efficacy data.
    Heller G; Kattan MW; Scher HI
    Med Decis Making; 2007; 27(4):380-6. PubMed ID: 17761958
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Implementing a decision-theoretic design in clinical trials: why and how?
    Palmer CR; Shahumyan H
    Stat Med; 2007 Nov; 26(27):4939-57. PubMed ID: 17582801
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A prospective study of causes of haemolysis during venepuncture: tourniquet time should be kept to a minimum.
    Saleem S; Mani V; Chadwick MA; Creanor S; Ayling RM
    Ann Clin Biochem; 2009 May; 46(Pt 3):244-6. PubMed ID: 19389888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The use of a modified Fedorov exchange algorithm to optimise sampling times for population pharmacokinetic experiments.
    Ogungbenro K; Graham G; Gueorguieva I; Aarons L
    Comput Methods Programs Biomed; 2005 Nov; 80(2):115-25. PubMed ID: 16139390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimal design of clinical trials with computer simulation based on results of earlier trials, illustrated with a lipodystrophy trial in HIV patients.
    Abbas I; Rovira J; Casanovas J; Greenfield T
    J Biomed Inform; 2008 Dec; 41(6):1053-61. PubMed ID: 18534916
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonlinear mixed effects to improve glucose minimal model parameter estimation: a simulation study in intensive and sparse sampling.
    Denti P; Bertoldo A; Vicini P; Cobelli C
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2156-66. PubMed ID: 19380266
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Pharmacokinetic design for the preclinical phase. Application to the study of an anthracenone].
    Adame-Reyna M; Guerrero-Olazarán M; Belmontes-Hernández R; Viader-Salvadó JM
    Rev Invest Clin; 1994; 46(1):53-8. PubMed ID: 8079065
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design optimisation for pharmacokinetic modeling of a cocktail of phenotyping drugs.
    Nguyen TT; Bénech H; Delaforge M; Lenuzza N
    Pharm Stat; 2016; 15(2):165-77. PubMed ID: 26689604
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From adults to children: simulation-based choice of an appropriate sparse-sampling schedule.
    Reif S; Schultze-Mosgau M; Sutter G
    Paediatr Drugs; 2012 Jun; 14(3):189-200. PubMed ID: 22409261
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of some practical sampling strategies for population pharmacokinetic studies.
    Jonsson EN; Wade JR; Karlsson MO
    J Pharmacokinet Biopharm; 1996 Apr; 24(2):245-63. PubMed ID: 8875349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Less is better: why venepuncture practice should be reviewed for those with end-stage renal failure.
    Hewart C
    Prof Nurse; 2003 Feb; 18(6):344-6. PubMed ID: 12630247
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sources of preanalytical error in pharmacokinetic analyses - focus on intravenous drug administration and collection of blood samples.
    Krischke M; Boddy AV; Boos J
    Expert Opin Drug Metab Toxicol; 2014 Jun; 10(6):825-38. PubMed ID: 24738965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the recording of sample times and parameter estimation from repeated measures pharmacokinetic data.
    Sun H; Ette EI; Ludden TM
    J Pharmacokinet Biopharm; 1996 Dec; 24(6):637-50. PubMed ID: 9300354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimal design for multiresponse pharmacokinetic-pharmacodynamic models - dealing with unbalanced designs.
    Ogungbenro K; Gueorguieva I; Majid O; Graham G; Aarons L
    J Pharmacokinet Pharmacodyn; 2007 Jun; 34(3):313-31. PubMed ID: 17285361
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving the blood collection process using the active-phlebotomist phlebotomy system.
    Jeon BR; Seo M; Lee YW; Shin HB; Lee SH; Lee YK
    Clin Lab; 2011; 57(1-2):21-7. PubMed ID: 21391461
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Implementing a pediatric phlebotomy protocol.
    Buckbee KM
    MLO Med Lab Obs; 1994 Apr; 26(4):32-5. PubMed ID: 10135198
    [No Abstract]   [Full Text] [Related]  

  • 59. The application of dried blood spot sampling in global clinical trials.
    Amsterdam Pv; Waldrop C
    Bioanalysis; 2010 Nov; 2(11):1783-6. PubMed ID: 21083482
    [No Abstract]   [Full Text] [Related]  

  • 60. Optimal sampling times for pharmacokinetic experiments.
    D'Argenio DZ
    J Pharmacokinet Biopharm; 1981 Dec; 9(6):739-56. PubMed ID: 7341758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.