These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 16463278)
1. Predicting the three-dimensional structure of human P-glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites. Vandevuer S; Van Bambeke F; Tulkens PM; Prévost M Proteins; 2006 May; 63(3):466-78. PubMed ID: 16463278 [TBL] [Abstract][Full Text] [Related]
2. Identification of putative binding sites of P-glycoprotein based on its homology model. Globisch C; Pajeva IK; Wiese M ChemMedChem; 2008 Feb; 3(2):280-95. PubMed ID: 18175303 [TBL] [Abstract][Full Text] [Related]
3. ATP hydrolysis promotes interactions between the extracellular ends of transmembrane segments 1 and 11 of human multidrug resistance P-glycoprotein. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2005 Aug; 44(30):10250-8. PubMed ID: 16042402 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the inward- and outward-open homology models and ligand binding of human P-glycoprotein. Pajeva IK; Globisch C; Wiese M FEBS J; 2009 Dec; 276(23):7016-26. PubMed ID: 19878299 [TBL] [Abstract][Full Text] [Related]
5. P glycoprotein and the mechanism of multidrug resistance. Váradi A; Szakács G; Bakos E; Sarkadi B Novartis Found Symp; 2002; 243():54-65; discussion 65-8, 180-5. PubMed ID: 11990782 [TBL] [Abstract][Full Text] [Related]
6. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884 [TBL] [Abstract][Full Text] [Related]
7. Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3. Paula S; Monson N; Ball WJ Proteins; 2005 Aug; 60(3):382-91. PubMed ID: 15971203 [TBL] [Abstract][Full Text] [Related]
8. Proximity of the nucleotide binding domains of the P-glycoprotein multidrug transporter to the membrane surface: a resonance energy transfer study. Liu R; Sharom FJ Biochemistry; 1998 May; 37(18):6503-12. PubMed ID: 9572868 [TBL] [Abstract][Full Text] [Related]
9. Residue G346 in transmembrane segment six is involved in inter-domain communication in P-glycoprotein. Storm J; O'Mara ML; Crowley EH; Peall J; Tieleman DP; Kerr ID; Callaghan R Biochemistry; 2007 Sep; 46(35):9899-910. PubMed ID: 17696319 [TBL] [Abstract][Full Text] [Related]
10. Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket. Loo TW; Bartlett MC; Clarke DM Biochem J; 2006 Oct; 399(2):351-9. PubMed ID: 16813563 [TBL] [Abstract][Full Text] [Related]
11. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study. Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore. Axe FU; Bembenek SD; Szalma S J Mol Graph Model; 2006 May; 24(6):456-64. PubMed ID: 16386444 [TBL] [Abstract][Full Text] [Related]
13. P-glycoprotein: from genomics to mechanism. Ambudkar SV; Kimchi-Sarfaty C; Sauna ZE; Gottesman MM Oncogene; 2003 Oct; 22(47):7468-85. PubMed ID: 14576852 [TBL] [Abstract][Full Text] [Related]
14. Mapping the topology and determination of a low-resolution three-dimensional structure of the calmodulin-melittin complex by chemical cross-linking and high-resolution FTICRMS: direct demonstration of multiple binding modes. Schulz DM; Ihling C; Clore GM; Sinz A Biochemistry; 2004 Apr; 43(16):4703-15. PubMed ID: 15096039 [TBL] [Abstract][Full Text] [Related]
15. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Ambudkar SV; Kim IW; Sauna ZE Eur J Pharm Sci; 2006 Apr; 27(5):392-400. PubMed ID: 16352426 [TBL] [Abstract][Full Text] [Related]
16. A model for the three-dimensional structure of human plasma vitronectin from small-angle scattering measurements. Lynn GW; Heller WT; Mayasundari A; Minor KH; Peterson CB Biochemistry; 2005 Jan; 44(2):565-74. PubMed ID: 15641781 [TBL] [Abstract][Full Text] [Related]
17. Analysis of CYP2D6 substrate interactions by computational methods. Ito Y; Kondo H; Goldfarb PS; Lewis DF J Mol Graph Model; 2008 Feb; 26(6):947-56. PubMed ID: 17764997 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction. Lima SA; Cordeiro-da-Silva A; de Castro B; Gameiro P Biophys Chem; 2007 Jan; 125(1):143-50. PubMed ID: 16919386 [TBL] [Abstract][Full Text] [Related]
19. Topology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2). Zhang EY; Phelps MA; Banerjee A; Khantwal CM; Chang C; Helsper F; Swaan PW Biochemistry; 2004 Sep; 43(36):11380-92. PubMed ID: 15350125 [TBL] [Abstract][Full Text] [Related]
20. Structure modeling, ligand binding, and binding affinity calculation (LR-MM-PBSA) of human heparanase for inhibition and drug design. Zhou Z; Bates M; Madura JD Proteins; 2006 Nov; 65(3):580-92. PubMed ID: 16972282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]