These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Ren S; Guo J; Zeng G; Sun G Appl Microbiol Biotechnol; 2006 Oct; 72(6):1316-21. PubMed ID: 16622679 [TBL] [Abstract][Full Text] [Related]
4. Study of the degradation of dyes by MnP of Phanerochaete chrysosporium produced in a fixed-bed bioreactor. Moldes D; Rodríguez Couto S; Cameselle C; Sanromán MA Chemosphere; 2003 Apr; 51(4):295-303. PubMed ID: 12604081 [TBL] [Abstract][Full Text] [Related]
5. Decolourisation of diverse industrial dyes by some Phlebia spp. and their comparison with Phanerochaete chrysosporium. Arora DS; Chander M J Basic Microbiol; 2004; 44(5):331-8. PubMed ID: 15378532 [TBL] [Abstract][Full Text] [Related]
6. Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp. Gill PK; Arora DS; Chander M J Ind Microbiol Biotechnol; 2002 Apr; 28(4):201-3. PubMed ID: 11986919 [TBL] [Abstract][Full Text] [Related]
7. Screening of filamentous fungi for the decolorization of a commercial reactive dye. dos Santos AZ; Cândido Neto JM; Tavares CR; da Costa SM J Basic Microbiol; 2004; 44(4):288-95. PubMed ID: 15266601 [TBL] [Abstract][Full Text] [Related]
8. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium. Sani RK; Azmi W; Banerjee UC Folia Microbiol (Praha); 1998; 43(1):85-8. PubMed ID: 9616055 [TBL] [Abstract][Full Text] [Related]
9. Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Boer CG; Obici L; de Souza CG; Peralta RM Bioresour Technol; 2004 Sep; 94(2):107-12. PubMed ID: 15158501 [TBL] [Abstract][Full Text] [Related]
10. Decolorization and biotransformation of triphenylmethane dye, methyl violet, by Aspergillus sp. isolated from Ladakh, India. Kumar CG; Mongolla P; Basha A; Joseph J; Sarma VU; Kamal A J Microbiol Biotechnol; 2011 Mar; 21(3):267-73. PubMed ID: 21464597 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of synthetic dye decolorization capacity in Ischnoderma resinosum. Eichlerová I; Homolka L; Nerud F J Ind Microbiol Biotechnol; 2006 Sep; 33(9):759-66. PubMed ID: 16491363 [TBL] [Abstract][Full Text] [Related]
12. Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. Gou M; Qu Y; Zhou J; Ma F; Tan L J Hazard Mater; 2009 Oct; 170(1):314-9. PubMed ID: 19473759 [TBL] [Abstract][Full Text] [Related]
13. N-demethylation of methylene blue by lignin peroxidase from Phanerochaete chrysosporium. Stoichiometric relation for H2O2 consumption. Ferreira VS; Magalhães DB; Kling SH; da Silva Júnior JG; Bon EP Appl Biochem Biotechnol; 2000; 84-86():255-65. PubMed ID: 10849794 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a fungal strain isolated from a polyphenol polluted site. Dritsa V; Rigas F; Natsis K; Marchant R Bioresour Technol; 2007 Jul; 98(9):1741-7. PubMed ID: 16935498 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of anthraquinone dyes by Shewanella sp. NTOU1 under anaerobic conditions. Chi WC; Chen CH; Liu SM Water Sci Technol; 2009; 60(4):889-99. PubMed ID: 19700827 [TBL] [Abstract][Full Text] [Related]
16. Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase-secreting engineered strain. Liu W; Chao Y; Yang X; Bao H; Qian S J Ind Microbiol Biotechnol; 2004 Mar; 31(3):127-32. PubMed ID: 15069603 [TBL] [Abstract][Full Text] [Related]
17. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Asad S; Amoozegar MA; Pourbabaee AA; Sarbolouki MN; Dastgheib SM Bioresour Technol; 2007 Aug; 98(11):2082-8. PubMed ID: 17055263 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of microorganisms capable of decolorizing various triphenylmethane dyes. Sharma DK; Saini HS; Singh M; Chimni SS; Chadha BS J Basic Microbiol; 2004; 44(1):59-65. PubMed ID: 14768029 [TBL] [Abstract][Full Text] [Related]
19. Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Yang X; Wang J; Zhao X; Wang Q; Xue R Bioresour Technol; 2011 Nov; 102(22):10535-41. PubMed ID: 21920734 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp. triphenylmethane reductase in transgenic Arabidopsis. Fu XY; Zhao W; Xiong AS; Tian YS; Zhu B; Peng RH; Yao QH Appl Microbiol Biotechnol; 2013 Feb; 97(4):1799-806. PubMed ID: 22573270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]