These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16464067)

  • 1. Chemical complementarity in the contacts for nanoscale organic field-effect transistors.
    Tulevski GS; Miao Q; Afzali A; Graham TO; Kagan CR; Nuckolls C
    J Am Chem Soc; 2006 Feb; 128(6):1788-9. PubMed ID: 16464067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-contact poly(3,3'''-didodecylquaterthiophene) thin-film transistors with gold source-drain electrodes modified by alkanethiol monolayers.
    Cai QJ; Chan-Park MB; Lu ZS; Li CM; Ong BS
    Langmuir; 2008 Oct; 24(20):11889-94. PubMed ID: 18774833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attaching organic semiconductors to gate oxides: in situ assembly of monolayer field effect transistors.
    Tulevski GS; Miao Q; Fukuto M; Abram R; Ocko B; Pindak R; Steigerwald ML; Kagan CR; Nuckolls C
    J Am Chem Soc; 2004 Nov; 126(46):15048-50. PubMed ID: 15548000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors.
    Lee WH; Park J; Sim SH; Lim S; Kim KS; Hong BH; Cho K
    J Am Chem Soc; 2011 Mar; 133(12):4447-54. PubMed ID: 21381751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes.
    Qi P; Javey A; Rolandi M; Wang Q; Yenilmez E; Dai H
    J Am Chem Soc; 2004 Sep; 126(38):11774-5. PubMed ID: 15382895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers.
    Calhoun MF; Sanchez J; Olaya D; Gershenson ME; Podzorov V
    Nat Mater; 2008 Jan; 7(1):84-9. PubMed ID: 18026107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance organic field-effect transistors: molecular design, device fabrication, and physical properties.
    Di CA; Yu G; Liu Y; Zhu D
    J Phys Chem B; 2007 Dec; 111(51):14083-96. PubMed ID: 18052267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge injection across self-assembly monolayers in organic field-effect transistors: odd-even effects.
    Stoliar P; Kshirsagar R; Massi M; Annibale P; Albonetti C; de Leeuw DM; Biscarini F
    J Am Chem Soc; 2007 May; 129(20):6477-84. PubMed ID: 17472377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials.
    Xiao Z; Camino FE
    Nanotechnology; 2009 Apr; 20(13):135205. PubMed ID: 19420491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printed silver ohmic contacts for high-mobility organic thin-film transistors.
    Wu Y; Li Y; Ong BS
    J Am Chem Soc; 2006 Apr; 128(13):4202-3. PubMed ID: 16568975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning organic single-crystal transistor arrays.
    Briseno AL; Mannsfeld SC; Ling MM; Liu S; Tseng RJ; Reese C; Roberts ME; Yang Y; Wudl F; Bao Z
    Nature; 2006 Dec; 444(7121):913-7. PubMed ID: 17167482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection.
    Huang J; Miragliotta J; Becknell A; Katz HE
    J Am Chem Soc; 2007 Aug; 129(30):9366-76. PubMed ID: 17625846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralow-power organic complementary circuits.
    Klauk H; Zschieschang U; Pflaum J; Halik M
    Nature; 2007 Feb; 445(7129):745-8. PubMed ID: 17301788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzo[1,2-b:4,5-b']bis[b]benzothiophene as solution processible organic semiconductor for field-effect transistors.
    Gao P; Beckmann D; Tsao HN; Feng X; Enkelmann V; Pisula W; Müllen K
    Chem Commun (Camb); 2008 Apr; (13):1548-50. PubMed ID: 18354795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaporation-induced self-organization of inkjet-printed organic semiconductors on surface-modified dielectrics for high-performance organic transistors.
    Lim J; Lee W; Kwak D; Cho K
    Langmuir; 2009 May; 25(9):5404-10. PubMed ID: 19348497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors.
    Di CA; Yu G; Liu Y; Guo Y; Wu W; Wei D; Zhu D
    Phys Chem Chem Phys; 2008 May; 10(17):2302-7. PubMed ID: 18414721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors.
    Talapin DV; Murray CB
    Science; 2005 Oct; 310(5745):86-9. PubMed ID: 16210533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled modulation of conductance in silicon devices by molecular monolayers.
    He T; He J; Lu M; Chen B; Pang H; Reus WF; Nolte WM; Nackashi DP; Franzon PD; Tour JM
    J Am Chem Soc; 2006 Nov; 128(45):14537-41. PubMed ID: 17090037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-based direct growth of organic crystals on an active channel region for printable bottom-contact organic field-effect transistors.
    Hong JP; Lee S
    Angew Chem Int Ed Engl; 2009; 48(17):3096-8. PubMed ID: 19309024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.