These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 16464105)

  • 21. Discovery of a novel HCV helicase inhibitor by a de novo drug design approach.
    Kandil S; Biondaro S; Vlachakis D; Cummins AC; Coluccia A; Berry C; Leyssen P; Neyts J; Brancale A
    Bioorg Med Chem Lett; 2009 Jun; 19(11):2935-7. PubMed ID: 19414257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular complexity analysis of de novo designed ligands.
    Boda K; Johnson AP
    J Med Chem; 2006 Oct; 49(20):5869-79. PubMed ID: 17004702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tagged fragment method for evolutionary structure-based de novo lead generation and optimization.
    Liu Q; Masek B; Smith K; Smith J
    J Med Chem; 2007 Nov; 50(22):5392-402. PubMed ID: 17918924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein structure prediction: combining de novo modeling with sparse experimental data.
    Latek D; Ekonomiuk D; Kolinski A
    J Comput Chem; 2007 Jul; 28(10):1668-76. PubMed ID: 17342709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer-based de novo design, synthesis, and evaluation of boronic acid-based artificial receptors for selective recognition of dopamine.
    Jin S; Li M; Zhu C; Tran V; Wang B
    Chembiochem; 2008 Jun; 9(9):1431-8. PubMed ID: 18494023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach.
    Ni S; Yuan Y; Huang J; Mao X; Lv M; Zhu J; Shen X; Pei J; Lai L; Jiang H; Li J
    J Med Chem; 2009 Sep; 52(17):5295-8. PubMed ID: 19691347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular conceptor for training in medicinal chemistry, drug design, and cheminformatics.
    Cohen C; Fischel O; Cohen E
    Chem Biol Drug Des; 2007 Jan; 69(1):75-82. PubMed ID: 17313460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational protein design with side-chain conformational entropy.
    Sciretti D; Bruscolini P; Pelizzola A; Pretti M; Jaramillo A
    Proteins; 2009 Jan; 74(1):176-91. PubMed ID: 18618711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exhaustive de novo design of low-molecular-weight fragments against the ATP-binding site of DNA-gyrase.
    Firth-Clark S; Todorov NP; Alberts IL; Williams A; James T; Dean PM
    J Chem Inf Model; 2006; 46(3):1168-73. PubMed ID: 16711736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of ligand-based de novo design for scaffold hopping and sidechain optimization: two case studies.
    Feher M; Gao Y; Baber JC; Shirley WA; Saunders J
    Bioorg Med Chem; 2008 Jan; 16(1):422-7. PubMed ID: 17920281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CoMFA based de novo design of pyridazine analogs as PTP1B inhibitors.
    Nair PC; Sobhia ME
    J Mol Graph Model; 2007 Jul; 26(1):117-23. PubMed ID: 17140831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fragment-based de novo ligand design by multiobjective evolutionary optimization.
    Dey F; Caflisch A
    J Chem Inf Model; 2008 Mar; 48(3):679-90. PubMed ID: 18307332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug Guru: a computer software program for drug design using medicinal chemistry rules.
    Stewart KD; Shiroda M; James CA
    Bioorg Med Chem; 2006 Oct; 14(20):7011-22. PubMed ID: 16870456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinatorial and computational approaches in structure-based drug design.
    Kubinyi H
    Curr Opin Drug Discov Devel; 1998 Jul; 1(1):16-27. PubMed ID: 19649785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational protein design: software implementation, parameter optimization, and performance of a simple model.
    Schmidt Am Busch M; Lopes A; Mignon D; Simonson T
    J Comput Chem; 2008 May; 29(7):1092-102. PubMed ID: 18069664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Software design patterns for information visualization.
    Heer J; Agrawala M
    IEEE Trans Vis Comput Graph; 2006; 12(5):853-60. PubMed ID: 17080809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying putative drug targets and potential drug leads: starting points for virtual screening and docking.
    Wishart DS
    Methods Mol Biol; 2008; 443():333-51. PubMed ID: 18446295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.