These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 16464111)
1. Electrochemistry of immobilized redox enzymes: kinetic characteristics of NADH oxidation catalysis at diaphorase monolayers affinity immobilized on electrodes. Limoges B; Marchal D; Mavré F; Savéant JM J Am Chem Soc; 2006 Feb; 128(6):2084-92. PubMed ID: 16464111 [TBL] [Abstract][Full Text] [Related]
2. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis. Mavré F; Bontemps M; Ammar-Merah S; Marchal D; Limoges B Anal Chem; 2007 Jan; 79(1):187-94. PubMed ID: 17194138 [TBL] [Abstract][Full Text] [Related]
3. High amplification rates from the association of two enzymes confined within a nanometric layer immobilized on an electrode: modeling and illustrating example. Limoges B; Marchal D; Mavré F; Savéant JM J Am Chem Soc; 2006 May; 128(18):6014-5. PubMed ID: 16669652 [TBL] [Abstract][Full Text] [Related]
4. Mediatorless voltammetric oxidation of NADH and sensing of ethanol. Raj CR; Behera S Biosens Bioelectron; 2005 Dec; 21(6):949-56. PubMed ID: 16257664 [TBL] [Abstract][Full Text] [Related]
5. Quantitative analysis of catalysis and inhibition at horseradish peroxidase monolayers immobilized on an electrode surface. Limoges B; Savéant JM; Yazidi D J Am Chem Soc; 2003 Jul; 125(30):9192-203. PubMed ID: 15369376 [TBL] [Abstract][Full Text] [Related]
6. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide. Antiochia R; Lavagnini I; Pastore P; Magno F Bioelectrochemistry; 2004 Sep; 64(2):157-63. PubMed ID: 15296789 [TBL] [Abstract][Full Text] [Related]
7. Theory and practice of enzyme bioaffinity electrodes. Chemical, enzymatic, and electrochemical amplification of in situ product detection. Limoges B; Marchal D; Mavré F; Savéant JM J Am Chem Soc; 2008 Jun; 130(23):7276-85. PubMed ID: 18491854 [TBL] [Abstract][Full Text] [Related]
8. Redox enzymes immobilized on electrodes with solution cosubstrates. General procedure for simulation of time-resolved catalytic responses. Andrieux CP; Limoges B; Marchal D; Savéant JM Anal Chem; 2006 May; 78(9):3138-43. PubMed ID: 16643005 [TBL] [Abstract][Full Text] [Related]
9. A liposome-based energy conversion system for accelerating the multi-enzyme reactions. Matsumoto R; Kakuta M; Sugiyama T; Goto Y; Sakai H; Tokita Y; Hatazawa T; Tsujimura S; Shirai O; Kano K Phys Chem Chem Phys; 2010 Nov; 12(42):13904-6. PubMed ID: 20848047 [TBL] [Abstract][Full Text] [Related]
10. Durable cofactor immobilization in sol-gel bio-composite thin films for reagentless biosensors and bioreactors using dehydrogenases. Wang Z; Etienne M; Quilès F; Kohring GW; Walcarius A Biosens Bioelectron; 2012 Feb; 32(1):111-7. PubMed ID: 22197100 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing. Zhen G; Eggli V; Vörös J; Zammaretti P; Textor M; Glockshuber R; Kuennemann E Langmuir; 2004 Nov; 20(24):10464-73. PubMed ID: 15544374 [TBL] [Abstract][Full Text] [Related]
12. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Guo K; Qian K; Zhang S; Kong J; Yu C; Liu B Talanta; 2011 Aug; 85(2):1174-9. PubMed ID: 21726755 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH. Kang HS; Na BK; Park DH Biotechnol Lett; 2007 Aug; 29(8):1277-80. PubMed ID: 17549436 [TBL] [Abstract][Full Text] [Related]
14. Protein electrodes with direct electrochemical communication. Wollenberger U; Spricigo R; Leimkühler S; Schröder K Adv Biochem Eng Biotechnol; 2008; 109():19-64. PubMed ID: 17928972 [TBL] [Abstract][Full Text] [Related]
15. A new biotinylated tris bipyridinyl iron(II) complex as redox biotin-bridge for the construction of supramolecular biosensing architectures. Haddour N; Gondran C; Cosnier S Chem Commun (Camb); 2004 Feb; (3):324-5. PubMed ID: 14740059 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
17. Potentiometric method for substrate analysis using immobilized NAD + -dependent oxidoreductase enzymes. Chen AK; Liu CC; Schiller JG Biotechnol Bioeng; 1979 Nov; 21(11):1905-15. PubMed ID: 226201 [TBL] [Abstract][Full Text] [Related]
18. Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Argyrou A; Sun G; Palfey BA; Blanchard JS Biochemistry; 2003 Feb; 42(7):2218-28. PubMed ID: 12590611 [TBL] [Abstract][Full Text] [Related]
19. Electrocatalytic oxidation of dihydronicotineamide adenine dinucleotide on gold electrode modified with catechol-terminated alkanethiol self-assembly. Nakano K; Ohkubo K; Taira H; Takagi M; Imato T Anal Chim Acta; 2008 Jun; 619(1):30-6. PubMed ID: 18539170 [TBL] [Abstract][Full Text] [Related]
20. A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications. Ricci F; Amine A; Moscone D; Palleschi G Biosens Bioelectron; 2007 Jan; 22(6):854-62. PubMed ID: 16621499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]