These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16464863)

  • 1. The role of Drosophila ninaG oxidoreductase in visual pigment chromophore biogenesis.
    Ahmad ST; Joyce MV; Boggess B; O'Tousa JE
    J Biol Chem; 2006 Apr; 281(14):9205-9. PubMed ID: 16464863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Drosophila ninaG oxidoreductase acts in visual pigment chromophore production.
    Sarfare S; Ahmad ST; Joyce MV; Boggess B; O'Tousa JE
    J Biol Chem; 2005 Mar; 280(12):11895-901. PubMed ID: 15640158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolic pathway of visual pigment chromophore formation in Drosophila melanogaster--all-trans (3S)-3-hydroxyretinal is formed from all-trans retinal via (3R)-3-hydroxyretinal in the dark.
    Seki T; Isono K; Ozaki K; Tsukahara Y; Shibata-Katsuta Y; Ito M; Irie T; Katagiri M
    Eur J Biochem; 1998 Oct; 257(2):522-7. PubMed ID: 9826202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation and identification of geometric isomers of 3-hydroxyretinoids and occurrence in the eyes of insects.
    Goldsmith TH; Marks BC; Bernard GD
    Vision Res; 1986; 26(11):1763-9. PubMed ID: 3617517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependency on light and vitamin A derivatives of the biogenesis of 3-hydroxyretinal and visual pigment in the compound eyes of Drosophila melanogaster.
    Isono K; Tanimura T; Oda Y; Tsukahara Y
    J Gen Physiol; 1988 Nov; 92(5):587-600. PubMed ID: 3148683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation of major Drosophila rhodopsin, ninaE, requires chromophore 3-hydroxyretinal.
    Ozaki K; Nagatani H; Ozaki M; Tokunaga F
    Neuron; 1993 Jun; 10(6):1113-9. PubMed ID: 8318232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flies in the group Cyclorrhapha use (3S)-3-hydroxyretinal as a unique visual pigment chromophore.
    Seki T; Isono K; Ito M; Katsuta Y
    Eur J Biochem; 1994 Dec; 226(2):691-6. PubMed ID: 8001586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysiological functions of visual pigments.
    Yoshizawa T
    Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila ninaB and ninaD act outside of retina to produce rhodopsin chromophore.
    Gu G; Yang J; Mitchell KA; O'Tousa JE
    J Biol Chem; 2004 Apr; 279(18):18608-13. PubMed ID: 14982930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoid composition in the compound eyes of insects.
    Seki T; Fujishita S; Ito M; Matsuoka N; Tsukida K
    Exp Biol; 1987; 47(2):95-103. PubMed ID: 3436407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The absorbance spectrum and photosensitivity of a new synthetic "visual pigment" based on 4-hydroxyretinal.
    Kito Y; Partridge JC; Seidou M; Narita K; Hamanaka T; Michinomae M; Sekiya N; Yoshihara K
    Vision Res; 1992 Jan; 32(1):3-10. PubMed ID: 1386953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of cyclic and acyclic analogs of retinol, retinoic acid, and retinal by laser desorption ionization-, matrix-assisted laser desorption ionization-mass spectrometry, and UV/Vis spectroscopy.
    Wingerath T; Kirsch D; Spengler B; Stahl W
    Anal Biochem; 1999 Aug; 272(2):232-42. PubMed ID: 10415093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues.
    Fukada Y; Okano T; Shichida Y; Yoshizawa T; Trehan A; Mead D; Denny M; Asato AE; Liu RS
    Biochemistry; 1990 Mar; 29(12):3133-40. PubMed ID: 2140051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophore-Independent Roles of Opsin Apoproteins in Drosophila Mechanoreceptors.
    Katana R; Guan C; Zanini D; Larsen ME; Giraldo D; Geurten BRH; Schmidt CF; Britt SG; Göpfert MC
    Curr Biol; 2019 Sep; 29(17):2961-2969.e4. PubMed ID: 31447373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal.
    Han M; Groesbeek M; Smith SO; Sakmar TP
    Biochemistry; 1998 Jan; 37(2):538-45. PubMed ID: 9425074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a helix-bundle cross-link: NMR and UV-visible spectroscopic analyses and molecular modeling of ring-oxidized retinals.
    Williams TC; Mani V
    Biochemistry; 1991 Mar; 30(11):2976-88. PubMed ID: 2007133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic study of photoregeneration process of digitonin-solubilized squid rhodopsin.
    Tsuda M
    Biochim Biophys Acta; 1978 Jun; 502(3):495-506. PubMed ID: 26397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4-Hydroxyretinal, a new visual pigment chromophore found in the bioluminescent squid, Watasenia scintillans.
    Matsui S; Seidou M; Uchiyama I; Sekiya N; Hiraki K; Yoshihara K; Kito Y
    Biochim Biophys Acta; 1988 Sep; 966(3):370-4. PubMed ID: 3416013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of 3-hydroxyretinal in the cytosol of the butterfly compound eye.
    Shimazaki Y; Eguchi E
    Vision Res; 1993 Jan; 33(2):155-63. PubMed ID: 8447089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steric hindrance between chromophore substituents as the driving force of rhodopsin photoisomerization: 10-methyl-13-demethyl retinal containing rhodopsin.
    Koch D; Gärtner W
    Photochem Photobiol; 1997 Jan; 65(1):181-6. PubMed ID: 9066300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.