These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 16465883)
1. Fulvic acid degradation using nanoparticle TiO2 in a submerged membrane photocatalysis reactor. Fu JF; Ji M; An DN J Environ Sci (China); 2005; 17(6):942-5. PubMed ID: 16465883 [TBL] [Abstract][Full Text] [Related]
2. A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. Fu J; Ji M; Wang Z; Jin L; An D J Hazard Mater; 2006 Apr; 131(1-3):238-42. PubMed ID: 16266780 [TBL] [Abstract][Full Text] [Related]
3. Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Sun D; Meng TT; Loong TH; Hwa TJ Water Sci Technol; 2004; 49(1):103-10. PubMed ID: 14979544 [TBL] [Abstract][Full Text] [Related]
4. Adsorption and photocatalytic degradation of bisphenol A using TiO2 and its separation by submerged hollowfiber ultrafiltration membrane. Lee JW; Kwon TO; Thiruvenkatachari R; Moon IS J Environ Sci (China); 2006; 18(1):193-200. PubMed ID: 20050572 [TBL] [Abstract][Full Text] [Related]
5. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Huang X; Leal M; Li Q Water Res; 2008 Feb; 42(4-5):1142-50. PubMed ID: 17904191 [TBL] [Abstract][Full Text] [Related]
6. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Ling CM; Mohamed AR; Bhatia S Chemosphere; 2004 Nov; 57(7):547-54. PubMed ID: 15488916 [TBL] [Abstract][Full Text] [Related]
7. Comparison of suspended and fixed photocatalytic reactor systems. Geissen SU; Xi W; Weidemeyer A; Vogelpohl A; Bousselmi L; Ghrab A; Nnabi AE Water Sci Technol; 2001; 44(5):245-9. PubMed ID: 11695466 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and mechanism of TNT degradation in TiO2 photocatalysis. Son HS; Lee SJ; Cho IH; Zoh KD Chemosphere; 2004 Oct; 57(4):309-17. PubMed ID: 15312729 [TBL] [Abstract][Full Text] [Related]
9. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. Qiao S; Sun DD; Tay JH; Easton C Water Sci Technol; 2003; 47(1):211-7. PubMed ID: 12578197 [TBL] [Abstract][Full Text] [Related]
10. Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues-evaluation of the long-term stability of the photocatalytic activity of TiO2. Doll TE; Frimmel FH Water Res; 2005 Mar; 39(5):847-54. PubMed ID: 15743630 [TBL] [Abstract][Full Text] [Related]
11. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon. Wang YP; Wang LJ; Peng PY J Environ Sci (China); 2006; 18(3):562-6. PubMed ID: 17294657 [TBL] [Abstract][Full Text] [Related]
12. Performing a microfiltration integrated with photocatalysis using an Ag-TiO(2)/HAP/Al(2)O(3) composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties. Ma N; Zhang Y; Quan X; Fan X; Zhao H Water Res; 2010 Dec; 44(20):6104-14. PubMed ID: 20650505 [TBL] [Abstract][Full Text] [Related]
13. Removal of humic acid foulant from ultrafiltration membrane surface using photocatalytic oxidation process. Fang H; Sun DD; Wu M; Phay W; Tay JH Water Sci Technol; 2005; 51(6-7):373-80. PubMed ID: 16003999 [TBL] [Abstract][Full Text] [Related]
14. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. Coleman HM; Vimonses V; Leslie G; Amal R J Hazard Mater; 2007 Jul; 146(3):496-501. PubMed ID: 17574739 [TBL] [Abstract][Full Text] [Related]
15. Photocatalytic degradation of dye effluent by titanium dioxide pillar pellets in aqueous solution. Li YC; Zou LD; Hu E J Environ Sci (China); 2004; 16(3):375-9. PubMed ID: 15272706 [TBL] [Abstract][Full Text] [Related]
16. Use of an integrated photocatalysis/hollow fiber microfiltration system for the removal of trichloroethylene in water. Choo KH; Chang DI; Park KW; Kim MH J Hazard Mater; 2008 Mar; 152(1):183-90. PubMed ID: 17686580 [TBL] [Abstract][Full Text] [Related]
17. Photo-catalyzed degradation of p-nitrophenol employing TiO2 and UV radiations. Shintre SN; Thakur PR J Environ Sci Eng; 2008 Oct; 50(4):299-302. PubMed ID: 19697765 [TBL] [Abstract][Full Text] [Related]
18. Combination of one-dimensional TiO(2) nanowire photocatalytic oxidation with microfiltration for water treatment. Zhang X; Pan JH; Du AJ; Fu W; Sun DD; Leckie JO Water Res; 2009 Mar; 43(5):1179-86. PubMed ID: 19157486 [TBL] [Abstract][Full Text] [Related]
19. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. Yang S; Zhu W; Wang J; Chen Z J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483 [TBL] [Abstract][Full Text] [Related]
20. Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor. Jeon JH; Kim SD; Lim TH; Lee DH Chemosphere; 2005 Aug; 60(8):1162-8. PubMed ID: 15993166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]