These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 16466645)
1. Functional characterization of Zn2(+)-sensitive GABA transporter expressed in primary cultures of astrocytes from rat cerebral cortex. Wu Q; Wada M; Shimada A; Yamamoto A; Fujita T Brain Res; 2006 Feb; 1075(1):100-9. PubMed ID: 16466645 [TBL] [Abstract][Full Text] [Related]
2. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379 [TBL] [Abstract][Full Text] [Related]
3. Transport characteristics of N-acetyl-L-aspartate in rat astrocytes: involvement of sodium-coupled high-affinity carboxylate transporter NaC3/NaDC3-mediated transport system. Fujita T; Katsukawa H; Yodoya E; Wada M; Shimada A; Okada N; Yamamoto A; Ganapathy V J Neurochem; 2005 May; 93(3):706-14. PubMed ID: 15836629 [TBL] [Abstract][Full Text] [Related]
4. Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. White HS; Sarup A; Bolvig T; Kristensen AS; Petersen G; Nelson N; Pickering DS; Larsson OM; Frølund B; Krogsgaard-Larsen P; Schousboe A J Pharmacol Exp Ther; 2002 Aug; 302(2):636-44. PubMed ID: 12130726 [TBL] [Abstract][Full Text] [Related]
5. Functional characteristics of H+ -dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex. Shimada A; Nakagawa Y; Morishige H; Yamamoto A; Fujita T Neurosci Lett; 2006 Jan; 392(3):207-12. PubMed ID: 16213084 [TBL] [Abstract][Full Text] [Related]
6. Astrocytic γ-aminobutyric acid (GABA) transporters mediate guanidinoacetate transport in rat brain. Tachikawa M; Yashiki A; Akanuma SI; Matsukawa H; Ide S; Minami M; Hosoya KI Neurochem Int; 2018 Feb; 113():1-7. PubMed ID: 29175673 [TBL] [Abstract][Full Text] [Related]
7. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. Takanaga H; Ohtsuki S; Hosoya Ki ; Terasaki T J Cereb Blood Flow Metab; 2001 Oct; 21(10):1232-9. PubMed ID: 11598501 [TBL] [Abstract][Full Text] [Related]
8. GABA transporters as drug targets for modulation of GABAergic activity. Schousboe A; Sarup A; Larsson OM; White HS Biochem Pharmacol; 2004 Oct; 68(8):1557-63. PubMed ID: 15451399 [TBL] [Abstract][Full Text] [Related]
9. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes. Inazu M; Takeda H; Matsumiya T J Neurochem; 2005 Sep; 94(5):1427-37. PubMed ID: 16000150 [TBL] [Abstract][Full Text] [Related]
10. Functional expression of metabotropic GABAB receptors in primary cultures of astrocytes from rat cerebral cortex. Oka M; Wada M; Wu Q; Yamamoto A; Fujita T Biochem Biophys Res Commun; 2006 Mar; 341(3):874-81. PubMed ID: 16455058 [TBL] [Abstract][Full Text] [Related]
11. GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Conti F; Minelli A; Melone M Brain Res Brain Res Rev; 2004 Jul; 45(3):196-212. PubMed ID: 15210304 [TBL] [Abstract][Full Text] [Related]
12. Involvement of sialic acid in the regulation of γ--aminobutyric acid uptake activity of γ-aminobutyric acid transporter 1. Hu J; Fei J; Reutter W; Fan H Glycobiology; 2011 Mar; 21(3):329-39. PubMed ID: 21045010 [TBL] [Abstract][Full Text] [Related]
13. Expression of GABA transporters, GAT-1 and GAT-3, in the cerebral cortex and thalamus of the rat during postnatal development. Vitellaro-Zuccarello L; Calvaresi N; De Biasi S Cell Tissue Res; 2003 Sep; 313(3):245-57. PubMed ID: 12898208 [TBL] [Abstract][Full Text] [Related]
14. The role of N-glycosylation in the stability, trafficking and GABA-uptake of GABA-transporter 1. Terminal N-glycans facilitate efficient GABA-uptake activity of the GABA transporter. Cai G; Salonikidis PS; Fei J; Schwarz W; Schülein R; Reutter W; Fan H FEBS J; 2005 Apr; 272(7):1625-38. PubMed ID: 15794750 [TBL] [Abstract][Full Text] [Related]
15. A novel selective gamma-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS. Clausen RP; Frølund B; Larsson OM; Schousboe A; Krogsgaard-Larsen P; White HS Neurochem Int; 2006; 48(6-7):637-42. PubMed ID: 16517017 [TBL] [Abstract][Full Text] [Related]
16. P2Y1 receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes. Jacob PF; Vaz SH; Ribeiro JA; Sebastião AM Glia; 2014 Aug; 62(8):1211-26. PubMed ID: 24733747 [TBL] [Abstract][Full Text] [Related]
17. Presteady-state and steady-state kinetics and turnover rate of the mouse gamma-aminobutyric acid transporter (mGAT3). Sacher A; Nelson N; Ogi JT; Wright EM; Loo DD; Eskandari S J Membr Biol; 2002 Nov; 190(1):57-73. PubMed ID: 12422272 [TBL] [Abstract][Full Text] [Related]
18. Glutamate transporter GLAST/EAAT1 directs cell surface expression of FXYD2/gamma subunit of Na, K-ATPase in human fetal astrocytes. Gegelashvili M; Rodriguez-Kern A; Sung L; Shimamoto K; Gegelashvili G Neurochem Int; 2007 Jun; 50(7-8):916-20. PubMed ID: 17316900 [TBL] [Abstract][Full Text] [Related]
19. Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Krause S; Schwarz W Mol Pharmacol; 2005 Dec; 68(6):1728-35. PubMed ID: 16150932 [TBL] [Abstract][Full Text] [Related]
20. Functional characterization of Na+-independent choline transport in primary cultures of neurons from mouse cerebral cortex. Fujita T; Shimada A; Okada N; Yamamoto A Neurosci Lett; 2006 Jan; 393(2-3):216-21. PubMed ID: 16239069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]